精英家教网 > 初中数学 > 题目详情
16.用一枚直径为25mm的硬币完全覆盖一个正六边形,则这个正六边形的最大边长是(  )
A.$\frac{25}{2}$mmB.$\frac{25}{2}$$\sqrt{3}$mmC.$\frac{25}{4}$mmD.$\frac{25}{4}$$\sqrt{3}$mm

分析 根据题意得出圆内接半径r为$\frac{25}{2}$mm,求出OB,得出BD=OB•sin30°,则BC=2BD,即可得出结果.

解答 解:根据题意得:圆内接半径r为$\frac{25}{2}$mm,如图所示:
则OB=$\frac{25}{2}$,
∴BD=OB•sin30°=$\frac{25}{2}$×$\frac{1}{2}$=$\frac{25}{4}$(mm),
则BC=2×$\frac{25}{4}$=$\frac{25}{2}$(cm),
完全覆盖住的正六边形的边长最大为$\frac{25}{2}$mm.
故选:A.

点评 本题考查了正多边形和圆、正六边形的性质、三角函数、等腰三角形的性质等知识;运用三角函数求出圆内接正六边形的边长是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图,点D为BA延长线上的一点,且∠B=45°,∠D=∠ACB=60°,AB=3$\sqrt{2}$,
(1)试求BC的长;
(2)尺规作图:作出△ADC的外接圆⊙O(不写作法,保留作图痕迹),并求出⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,某电信部门计划修建一条连接B、C两地的电缆,测量人员在山脚A点测得B、C两地的仰角分别为30°、45°,在B地测得C地的仰角为60°.已知C地比A地高200米,电缆BC至少长多少米?($\sqrt{3}$≈1.732,$\sqrt{2}$≈1.414,结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.计算:(-1)2-$\sqrt{4}$×(2013-π)0+($\frac{1}{3}$)-1=2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.不等式组$\left\{\begin{array}{l}{2x-1>0}\\{x+1≥0}\end{array}\right.$的解集是(  )
A.x$>\frac{1}{2}$B.-1$≤x<\frac{1}{2}$C.x$<\frac{1}{2}$D.x≥-1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,AB是⊙O的直径,点C是圆上一点,∠BAC=70°,则∠OCB等于(  )
A.70°B.20°C.140°D.35°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,抛物线F:y=ax2+bx+c(a>0)与y轴相交于点C,直线L1经过点C且平行于x轴,将L1向上平移t(t>0)个单位得到直线L2.设L1与抛物线F的交点为C、D,L2与抛物线F的交点为A、B,连结AC、BC.
(1)当a=$\frac{1}{2}$,b=-$\frac{3}{2}$,c=1,t=2时,判断△ABC的形状,并说明理由;
(2)若△ABC为直角三角形,求t的值;(用含a的式子表示)
(3)在(2)的条件下,若点A关于y轴的对称点A′恰好在抛物线F的对称轴上,连结A′C,BD,若四边形A′CDB的面积为2$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(-1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=$\sqrt{3}$,那么当点P运动一周时,点Q运动的总路程为4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.
(1)求证:△AEH∽△ABC;
(2)求这个正方形的边长与面积.

查看答案和解析>>

同步练习册答案