精英家教网 > 初中数学 > 题目详情
14.购买一种水果,所付款金额(元)与购买数量(千克)之间的函数图象由线段OA和射线AB组成,如图所示,则一次购买20千克这种水果,比分两次每次购买10千克这种水果可以节省的费用为(  )
A.20元B.12元C.10元D.8元

分析 根据函数图象可以得到10千克水果付款50元,超出10千克的部分每千克$\frac{70-50}{15-10}$元,从而可以解答本题.

解答 解:由函数图象可得,
一次购买20千克这种水果付款为:50+(20-10)×$\frac{70-50}{15-10}$=90(元),
分两次每次购买10千克这种水果付款为:50+50=100(元),
∵100-90=10(元),
故选C.

点评 本题考查一次函数的应用,解题的关键是明确题意,利用数形结合的思想解答问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.矩形ABCD中,AC是对角线,AB=$\sqrt{3}$,将△ABC绕点C顺时针旋转60°,点B恰好落在AD边上的点E处,点A经过的路径是$\widehat{AF}$,则图中影阴部分的面积为$\frac{7}{6}π$-$\frac{3}{2}\sqrt{3}$.(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,直线EF,CD相交于点O,OA⊥OB,且OC平分∠AOF.
(1)若∠AOE=40°,求∠BOD的度数;
(2)若∠AOE=α,求∠BOD的度数.(用含α的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:
(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1
(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2
(3)作出点C关于x轴的对称点P.若点P向右平移x个单位长度后落在△A2B2C2的内部(不含落在△A2B2C2的边上),请直接写出x的取值范围.
(提醒:每个小正方形边长为1个单位长度)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.四边形ABCD是菱形,AC=16,DB=12,DH⊥AB于点H,求DH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,在⊙O中,∠C=30°,AB=2cm,则弧AB的长等于$\frac{2π}{3}$.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC=1:2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知:一次函数y=-x+b的图象与x轴、y轴的交点分别为A、B与反比例函数$y=\frac{5}{x}(x>0)$的图象交于点C、D,且$\frac{BD}{BA}=\frac{2}{3}$.
(1)求∠BAO的度数;
(2)求O到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D作CE∥BD,DE∥AC,CE和DE交于点E.
(1)求证:四边形ODEC是矩形;
(2)当∠ADB=60°,AD=2$\sqrt{3}$时,求sin∠AED的值,求∠EAD的正切值.

查看答案和解析>>

同步练习册答案