精英家教网 > 初中数学 > 题目详情
如图,正比例函数y=kx的图象与反比例函数y=
1
x
的图象相交于A、B两点,且A的坐标为(1,1).
(1)求正比例函数的解析式;
(2)已知M,N是y轴上的点,若四边形AMBN是矩形,求M、N的坐标.
(1)把(1,1)代入y=kx中,得,1=1×k,即k=1
∴正比例函数的解析式为:y=x;

(2)解
y=x
y=
1
x
,可得
x1=1
y1=1
x2=-1
y2=-1
,即B点坐标是(-1,-1).
设y轴正半轴上M坐标是(0,y),负半轴上N点坐标为(0,-y).
∴根据勾股定理,得(y+1)2+1+(-y-1)2+1=(1+1)2+(1+1)2,解得,y1=
2
,y2=-
2

∴M点的坐标为(0,
2
),N点的坐标为(0,-
2
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,过反比例函数y=
4
x
图象上一点A分别向x轴,y轴作垂线,垂足分别为点B,C,两条垂线与坐标轴所围成的图形为正方形,过点A的一次函数y=kx+1与x轴、y轴分别交于点D、E,作EFx轴,分别交AB和反比函数图象于点G、F,连接BF,AF.
(1)求点A的坐标和一次函数解析式;
(2)求四边形ADBF的面积;
(3)猜想线段DE和线段BF有怎样的关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知反比例函数y=
k
x
图象过第二象限内的点A(-2,m),作AB⊥x轴于点B,Rt△AOB面积为3.
(1)求k和m的值;
(2)若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(4,-
3
2

①求直线y=ax+b关系式;
②设直线y=ax+b与x轴交于M,求AM的长;
③根据图象写出使反比例函数y=
k
x
值大于一次函数y=ax+b的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图:点A(
3
,1)在反比例函数图象上,将y轴绕点O顺时针旋转30°,与反比例函数在第一象限内交于点B,
求:(1)反比例函数的解析式;
(2)求点B的坐标及△AOB的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3),反比例函数y=
m
x
(x>0)
的图象经过点D,点P是一次函数y=kx+3-3k(k≠0)的图象与该反比例函数图象的一个公共点
①求反比例函数解析式;
②通过计算,说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;
③对于一次函数y=kx+3-kx(k≠0)当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写过程)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,反比例函数y=
k
x
(k>0)与长方形OABC在第一象限相交于D、E两点,OA=2,OC=4,连接OD、OE、DE.记△OAD、△OCE的面积分别为S1、S2
(1)①点B坐标为______;②S1______S2(填“>”、“<”、“=”);
(2)当点D为线段AB的中点时,求k的值及点E坐标;
(3)当S1+S2=2时,试判断△ODE的形状,并求△ODE的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=kx+b的图象与反比例函数y=
m
x
的图象交于A(-2,1),B(1,n)两点.
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值>反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

李先生参加了清华同方电脑公司推出的分期付款购买电脑活动,他购买的电脑价格为1.2万元,交了首付之后每月付款y元,x月结清余款.y与x的函数关系如图所示,试根据图象提供的信息回答下列问题.
(1)确定y与x的函数关系式,并求出首付款的数目;
(2)如打算每月付款不超过500元,李先生至少几个月才能结清余款?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知反比例函数y=
k
x
(k≠0)和一次函数y=-x+8.
(1)若一次函数和反函数的图象交于点(4,m),求m和k;
(2)k满足什么条件时,这两个函数图象有两个不同的交点;
(3)设(2)中的两个交点为A、B,试判断∠AOB是锐角还是钝角?

查看答案和解析>>

同步练习册答案