18£®¼ÆË㣺
£¨1£©|-2|-$\sqrt{\frac{1}{16}}$+£¨-2£©-2-£¨$\sqrt{3}$-2£©0£»               
£¨2£©$\frac{\sqrt{18}+\sqrt{2}}{\sqrt{2}}$-3£»
£¨3£©5$\sqrt{2}$+$\sqrt{8}$-7$\sqrt{18}$£»         
£¨4£©£¨$\sqrt{7}$+$\sqrt{3}$£©2-£¨5-2$\sqrt{6}$£©£¨5+2$\sqrt{6}$£©£»
£¨5£©Èô$\sqrt{3a-6}$+|b-2|+£¨C-$\sqrt{3}$£©2=0£¬Çóa+bµÄƽ·½¸ù¼°CµÄÖµ£®
£¨6£©½«ÏÂÁÐͼÖеÄÈý½ÇÐÎÈÆOµãÑØÄæʱÕëÐýת90¡ã£¬ÔÙÏòÓÒƽÒÆ5¸ñ£®

·ÖÎö £¨1£©Ö±½ÓÀûÓþø¶ÔÖµµÄÐÔÖÊÒÔ¼°¶þ´Î¸ùʽµÄÐÔÖʺ͸ºÕûÊýÖ¸ÊýÃݵÄÐÔÖÊ¡¢ÁãÖ¸ÊýÃݵÄÐÔÖʷֱ𻯼òÇó³ö´ð°¸£»
£¨2£©Ö±½Ó»¯¼ò¶þ´Î¸ùʽ£¬½ø¶ø¼ÆËãµÃ³ö´ð°¸£»
£¨3£©Ö±½Ó»¯¼ò¶þ´Î¸ùʽ£¬½ø¶ø¼ÆËãµÃ³ö´ð°¸£»
£¨4£©Ö±½ÓÀûÓó˷¨¹«Ê½¼ÆËãµÃ³ö´ð°¸£»
£¨5£©Ö±½ÓÀûÓÃż´Î·½µÄÐÔÖʺ;ø¶ÔÖµµÄÐÔÖÊ»¯¼òµÃ³öa£¬b£¬CµÄÖµ£¬½ø¶øÇó³ö´ð°¸£»
£¨6£©Ö±½ÓÀûÓÃÐýתµÄÐÔÖʺÍƽÒƵÄÐÔÖÊ·Ö±ðµÃ³ö·ûºÏÌâÒâµÄͼÐΣ®

½â´ð ½â£º£¨1£©|-2|-$\sqrt{\frac{1}{16}}$+£¨-2£©-2-£¨$\sqrt{3}$-2£©0
=2-$\frac{1}{4}$+$\frac{1}{4}$-1
=1£»
        
£¨2£©$\frac{\sqrt{18}+\sqrt{2}}{\sqrt{2}}$-3
=$\frac{3\sqrt{2}+\sqrt{2}}{\sqrt{2}}$-3
=4-3
=1£»

£¨3£©5$\sqrt{2}$+$\sqrt{8}$-7$\sqrt{18}$
=5$\sqrt{2}$+2$\sqrt{2}$-7¡Á3$\sqrt{2}$
=7$\sqrt{2}$-21$\sqrt{2}$
=-14$\sqrt{2}$£»         

£¨4£©£¨$\sqrt{7}$+$\sqrt{3}$£©2-£¨5-2$\sqrt{6}$£©£¨5+2$\sqrt{6}$£©
=7+3+2$\sqrt{21}$-£¨25-24£©
=9+2$\sqrt{21}$£»

£¨5£©¡ß$\sqrt{3a-6}$+|b-2|+£¨C-$\sqrt{3}$£©2=0£¬
¡à3a-6=0£¬b-2=0£¬C-$\sqrt{3}$=0£¬
½âµÃ£ºa=2£¬b=2£¬C=$\sqrt{3}$£¬
¹Êa+bµÄƽ·½¸ùΪ£º¡À2£¬
CµÄֵΪ£º$\sqrt{3}$£®

£¨6£©ÈçͼËùʾ£º
£®

µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁ˶þ´Î¸ùʽµÄ»ìºÏÔËËãÒÔ¼°Å¼´Î·½µÄÐÔÖÊ¡¢Ðýת±ä»»µÈ֪ʶ£¬ÕýÈ·ÕÆÎÕÔËËã·¨ÔòÒÔ¼°µÃ³öÐýתºó¶ÔÓ¦µãλÖÃÊǽâÌâ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ÊýÖáÉÏÓÐA¡¢B¡¢C¡¢DËĸöµã£¬·Ö±ð¶ÔÓ¦µÄÊýΪa¡¢b¡¢c¡¢d£¬ÆäÖÐA£¬BÁ½µãÓë±íʾ-9µÄµã¾ùÏà¾àÒ»¸öµ¥Î»£¬ÇÒµãAÔÚµãBµÄ×ó±ß£¬£¨c-16£©2+|d-20|=0£®
£¨1£©Çóa¡¢b¡¢c¡¢dµÄÖµ£»
£¨2£©ÈôA¡¢BÁ½µã¶¼ÒÔ6¸öµ¥Î»³¤¶È/ÃëµÄËÙ¶ÈÏòÓÒÔÈËÙÔ˶¯£¬Í¬Ê±C¡¢DÁ½µã¶¼ÒÔ2¸öµ¥Î»³¤¶È/ÃëµÄËÙ¶ÈÏò×óÔÈËÙÔ˶¯£¬ÔÚÔ˶¯tÃëºó£¬½«ÊýÖáÕÛµþ£¬Ê¹µãAÓëµãBÖغϣ¬´ËʱµãCÓëµãDÇ¡ºÃÒ²Öغϣ¬ÇótµÄÖµ£®
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬A¡¢B¡¢C¡¢DËĸöµã¼ÌÐøÔ˶¯£¬µ±µãBÔ˶¯µ½µãDµÄÓÒ²àʱ£¬ÎÊÊÇ·ñ´æÔÚʱ¼ät£¬Ê¹BÓëCµÄ¾àÀëÊÇAÓëDµÄ¾àÀëµÄ4±¶£¿Èô´æÔÚ£¬Çóʱ¼ät£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÏÂÁйØÓÚxµÄ·½³Ì£º
4£¨x-3£©+2a=-x+5¡­¢Ù£»7x-3=a+x¡­¢Ú£¬Èô·½³Ì¢ÙÓë·½³Ì¢ÚµÄ¸ùµÄ±ÈΪ6£º5£¬ÊÔÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Èôx-$\frac{1}{x}$=1£¬Ôòx3-$\frac{1}{{x}^{3}}$µÄֵΪ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Ö¤Ã÷£ºµ±nΪ´óÓÚ2µÄÕûÊýʱ£¬n5-5n3+4nÄܱ»120Õû³ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖªx+y=7£¬xy=-8£¬ÏÂÁи÷ʽ¼ÆËã½á¹ûÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®£¨x-y£©2=91B£®£¨x-y£©2=81C£®x2+y2=511D£®x2+y2=63

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÎÒ¹ú¹Å´úÊýѧ¼ÒÕÔˬµÄ¡°¹´¹É·½Ô²Í¼¡±ÊÇÓÉËĸöÈ«µÈµÄÖ±½ÇÈý½ÇÐÎÓëÖмäµÄÒ»¸öСÕý·½ÐÎÆ´³ÉµÄÒ»¸ö´óÕý·½ÐΣ¨ÈçͼËùʾ£©£¬Èç¹û´óÕý·½ÐεÄÃæ»ý100£¬Ð¡Õý·½ÐεÄÃæ»ýÊÇ4£¬Ö±½ÇÈý½ÇÐεÄÁ½Ö±½Ç±ß·Ö±ðΪaºÍb£¬ÄÇô£¨a+b£©2µÄֵΪ196£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÈçͼ¡÷ABCÖУ¬AB=AC£¬DÊÇCBÑÓ³¤ÏßÉÏÒ»µã£¬¹ýµãD×÷¡ÏADE=¡ÏABC£¬ÊÔÅжϡ÷ADBÊÇ·ñÓë¡÷DECÏàËÆ£¬ÈôÏàËÆÇë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Âú×ã$\sqrt{12a}$ÊÇÕûÊýµÄ×îСÕýÕûÊýaΪ3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸