【题目】在如图所示的平面直角坐标系中,已知点A(﹣3,﹣3),点B(﹣1,﹣3),点C(﹣1,﹣1)
(1)画出△ABC;
(2)以点C为旋转中心,画出将△ABC顺时针旋转90度的△A1B1C,并求出线段CA扫过的面积;
(3)以O为位似中心,在第一象限内作出△A2B2C2使△A2B2C2与△ABC位似,且位似比为2,并写出A2点的坐标.
科目:初中数学 来源: 题型:
【题目】如图(图1),在△ABC中,∠B=45°,点P从△ABC的顶点出发,沿A→B→C匀速运动到点C,(图2)是点P运动时,线段AP的长度y随时间x变化的关系图象,其中M,N为曲线部分的两个端点,则△ABC的周长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+1与x轴交于两点A(﹣1,0),B(1,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)过点B作BD∥CA抛物线交于点D,求四边形ACBD的面积;
(3)在x轴下方的抛物线上是否存在点M,过M作MN⊥x轴于点N,使以A、M、N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差y-x称为点P的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”
(1)点A(2,6)的“坐标差”为________;
(2)求抛物线y=-x2+5.x+4的“特征值”;
(3)某二次函数y=-x2+bx+c(c≠0)的“特征值”为-1,点B与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等,求此二次函数的解析式;
(4)二次函数y=-x2+px+q的图象的顶点在“坐标差”为2的一次函数的图象上,四边形DEFO是矩形,点E的坐标为(7,3),点O为坐标原点,点D在x轴上点下在x轴上,当二次函数y=-x2+px+q的图象与矩形的边只有三个交点时,求此二次函数的解析式及特征值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“小组合作制”正在七年级如火如茶地开展,旨在培养七年级学生的合作学习的精神和能力,学会在合作中自主探索.数学课上,吴老师在讲授“角平分线”时,设计了如下四种教学方法:①教师讲授,学生练习;②学生合作交流,探索规律;③教师引导学生总结规律,学生练习;④教师引导学生总结规律,学生合作交流,吴老师将上述教学方法作为调研内容发到七年级所有同学手中要求每位同学选出自己最喜欢的一种,然后吴老师从所有调查问卷中随机抽取了若干份调查问卷作为样本,统计如下:
序号①②③④代表上述四种教学方法,图二中,表示①部分的扇形的中心角度数为36°,请回答问题:
(1)在后来的抽样调查中,吴老师共抽取 位学生进行调查;并将条形统计图补充完整;
(2)图二中,表示③部分的扇形的中心角为多少度?
(3)若七年级学生中选择④种教学方法的有540人,请估计七年级总人数约为多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C(0,﹣3)
(1)求出该抛物线的函数关系式及对称轴
(2)点P是抛物线上的一个动点,设点P的横坐标为t (0<t<3).当△PCB的面积的最大值时,求点P的坐标
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.
(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;
(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】周末,身高都为1.6米的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在A处测得她看塔顶的仰角 为45,小丽站在B处(A、B与塔的轴心共线)测得她看塔顶的仰角 为30.她们又测出A、B两点的距离为30米.假设她们的眼睛离头顶都为10 cm,则可计算出塔高约为(结果精确到0.01,参考数据:≈1.414,≈1.732)( ).
A.36.21米 B.37.71米 C.40.98米 D.42.48米
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com