分析 (1)欲证明BE=CD,只要证明△BAE≌△DAC即可;
(2)作AM⊥BE于M,AN⊥DC于N.只要证明AM=AN即可解决问题;
(3)利用“八字型”证明∠OFD=∠OAB即可;
(4)由Rt△AME≌Rt△ANC,△AFM≌△AFN,可得EM=CN,FM=FN,推出EF+CF=FM+EN+FN-CN=2FN,由∠MFN=120°,∠AMF=∠ANF=90°,推出∠MAN=60°,推出∠FAN=∠FAM=30°,可得AF=2FN,由此即可解决问题;
解答 证明:(1)∵△ABD,△ACE都是等边三角形,
∴AB=AD,AE=AC,∠BAD=∠EAC=60°,
∴∠BAE=∠DAC,
在△BAE和△DAC中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAE=∠DAC}\\{AE=AC}\end{array}\right.$,
∴△BAE≌△DAC,
∴BE=CD.
(2)作AM⊥BE于M,AN⊥DC于N.
∵△BAE≌△DAC,
∴AM=AN(全等三角形对应边上的高相等),
∴AFM=∠AFN,
∴AF平分∠EFC.
(3)设BF交AD于O.
∵△BAE≌△DAC,
∴∠ABO=∠ODF,
∵∠AOB=∠DOF,
∴∠OFD=∠OAB=60°,即∠BFD=60°.
(4)在Rt△AME和Rt△ANC中,
$\left\{\begin{array}{l}{AM=AN}\\{AE=AC}\end{array}\right.$,
∴Rt△AME≌Rt△ANC,同理可证△AFM≌△AFN,
∴EM=CN,FM=FN,
∴EF+CF=FM+EN+FN-CN=2FN,
∵∠MFN=120°,∠AMF=∠ANF=90°,
∴∠MAN=60°,
∴∠FAN=∠FAM=30°,
∴AF=2FN,
∴EF+CF=FA.
点评 本题考查全等三角形的判定和性质、等边三角形的性质.角平分线的判定和性质、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线吗,构造全等三角形解决问题,属于中考常考题型.
科目:初中数学 来源: 题型:选择题
A. | y1>y2 | B. | y1=y2 | C. | y1<y2 | D. | 无法确定 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com