精英家教网 > 初中数学 > 题目详情
21、一次函数y=kx+4的图象经过点(-3,-2),则
(1)求这个函数表达式;
(2)建立适当坐标系,画出该函数的图象;
(3)判断(-5,3)是否在此函数的图象上;
(4)把这条直线向下平移4个单位长度后的函数关系式是
y=2x
分析:(1)待定系数法即可求解;(2)根据函数解析式即可画出图象;(3)把点代入即可判断是否在直线解析式上;(4)根据上加下减的规律即可得出答案;
解答:解:(1)∵一次函数y=kx+4的图象经过点(-3,-2),
∴-3k+4=-2,
∴k=2,
∴函数表达式y=2x+4;
(2)图象如图:

(3)把(-5,3)代入y=2x+4,
∵-10+4=-6≠3,
∴(-5,3)不在此函数的图象上;
(4)∵把这条直线向下平移4个单位,
∴函数关系式是:y=2x;
故答案为:y=2x.
点评:本题考查了一次函数图象与几何变换及待定系数法求函数解析式,属于基础题,关键是掌握用待定系数法求一次函数的解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,-1),并且与精英家教网x轴以及y=x+1的图象分别交于点C、D.
(1)若点D的横坐标为1,求四边形AOCD的面积(即图中阴影部分的面积);
(2)在第(1)小题的条件下,在y轴上是否存在这样的点P,使得以点P、B、D为顶点的三角形是等腰三角形.如果存在,求出点P坐标;如果不存在,说明理由.
(3)若一次函数y=kx+b的图象与函数y=x+1的图象的交点D始终在第一象限,则系数k的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

3、已知a,b,c为正实数,且满足a=b=c=k,则一次函数y=kx+(1+k)的图象一定经过(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网一次函数y=kx+b与反比例函数y=
2
x
的图象如图所示,则关于x的方程kx+b=
2
x
的解为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•白云区一模)若一次函数y=kx+b,当x的值增大1时,y值减小3,则当x的值减小3时,y值(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•潍坊)如图,抛物线y=ax2+bx+c关于直线x=1对称,与坐标轴交与A,B,C三点,且AB=4,点D(2,
32
)在抛物线上,直线l是一次函数y=kx-2(k≠0)的图象,点O是坐标原点.
(1)求抛物线的解析式;
(2)若直线l平分四边形OBDC的面积,求k的值;
(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线l交于M,N两点,问在y轴正半轴上是否存在一定点P,使得不论k取何值,直线PM与PN总是关于y轴对称?若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案