【题目】如图,已知△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E,若CD=5,CE=4,则⊙O的半径是( )
A.3B.4C.D.
【答案】D
【解析】
首先连接OD、BD,判断出OD∥BC,再根据DE是⊙O的切线,推得DE⊥OD,所以DE⊥BC;然后根据DE⊥BC,CD=5,CE=4,求出DE的长度是多少;最后判断出BD、AC的关系,根据勾股定理,求出BC的值是多少,再根据AB=BC,求出AB的值是多少,即可求出⊙O的半径是多少.
如图,连接OD、BD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴BD⊥AC,
又∵AB=BC,
∴AD=CD,
又∵AO=OB,
∴OD是△ABC的中位线,
∴OD∥BC,
∵DE是⊙O的切线,
∴DE⊥OD,
∴DE⊥BC,
∵CD=5,CE=4,
∴DE==3,
∵S△BCD=BDCD÷2=BCDE÷2,
∴5BD=3BC,
∴BD=BC,
∵BD2+CD2=BC2,
∴(BC)2+52=BC2,
解得BC=,
∵AB=BC,
∴AB=,
∴⊙O的半径是:÷2=.
故选D.
科目:初中数学 来源: 题型:
【题目】如图①,抛物线过、两点,交轴于点,连接.
(1)求该抛物线的表达式和对称轴;
(2)点是抛物线对称轴上一动点,当是以为直角边的直角三角形时,求所有符合条件的点的坐标;
(3)如图②,将抛物线在上方的图象沿折叠后与轴交与点,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数.
(1)求函数图象的顶点坐标,对称轴和与坐标轴的交点坐标,并画出函数的大致图象.
(2)若是函数图象上的两点,且,请比较的大小关系(直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数y=的图象上,OA=1,OC=6,试求出正方形ADEF的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是的直径,,点是上方圆上的一个动点,连接,作的平分线,交于点,过点作交的延长线于点.
(1)求证:是的切线;
(2)当_______时,四边形是平行四边形;
(3)连接交于点,连接,当 _______时,与相似.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.
(1)求这个二次函数的解析式;
(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;
(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,坐标原点O是正方形OABC的一个顶点,已知点B坐标为(1,7),过点P(a,0)(a>0)作PE⊥x轴,与边OA交于点E(异于点O、A),将四边形ABCE沿CE翻折,点A′、B′分别是点A、B的对应点,若点A′恰好落在直线PE上,则a的值等于( )
A.B.C.2D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图、已知A(4,)、B(1,2)是一次函数y=kx+b与反比例函数y=(m>0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D,
(1)根据图象直接回答:在第一象限内,当x取何值时,一次函数大于反比例函数的值?
(2)求一次函数表达式及m的值.
(3)P是线段AB上的一点,连接PC、PD,若△BDP∽△ACP,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】嘉嘉和琪琪一块去选汽车牌照,现只有四个牌照可随机选取,这四个牌照编号末尾数字如图所示.
牌照末尾数字 | 5 | 6 | 7 |
数量(个) | 1 | 1 | 2 |
(1)嘉嘉选取牌照编号末尾数字是6的概率是 ;
(2)请用树状图或列表法求她俩选取牌照编号末尾数字正好差1的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com