精英家教网 > 初中数学 > 题目详情
已知抛物线y=x2-(m2+5)x+2m2+6.
(1)求证:无论m为何值,抛物线与x轴必有两个交点,并且有一个交点必为A(2,0);
(2)设抛物线与x轴的另一个交点为B,记AB的长为d,求d与m之间的函数关系式;
(3)令d=10,问抛物线上是否存在点P,使△ABP为直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.精英家教网
分析:(1)令抛物线中y=0,即可用十字相乘法求得两根的值,由此可得证.
(2)在(1)中已经求得了两点的坐标,即可表示出AB的距离.
(3)根据d的长以及(2)中得出的d的表达式可确定出抛物线的解析式,也就能得出A、B的坐标.可以AB为直径作圆,圆与抛物线有交点,说明抛物线上存在符合条件的P点,可根据抛物线的解析式设出P点坐标(设横坐标,根据抛物线的解析式表示出纵坐标),在直角三角形ABP中,∠APB=90°,如果过P作PQ⊥x轴于Q,那么根据射影定理可得出PQ2=AQ•QB,由此可求出P点坐标.
解答:解:(1)令y=0,得x2-(m2+5)x+2m2+6=0,精英家教网
即(x-2)(x-m2-3)=0
解得x1=2,x2=m2+3
∴一定有交点A(2,0),B(m2+3,0)
∴结论得证

(2)∵A(2,0),B(m2+3,0)
∴d=AB=m2+1

(3)d=AB=m2+1=10,
∴y=x2-14x+24
∴A(2,0),B(12,0)
以AB为直径画圆,由图可知与抛物线有两个交点
∴存在这样的点P
设点P坐标为(x,x2-14x+24),作P1Q⊥横轴于Q,则点Q(x,0)
易得△AQP∽△PQB
AQ
QP
=
PQ
QB

∴PQ2=AQ•BQ=(x-2)(12-x)=(x2-14x+24)2
即(x-2)(12-x)=(x-2)2(x-12)2,(x-2)(x-12)≠0,
∴解得x=7±2
6

∴点P为(7+2
6
,-1),或(7-2
6
,-1).
点评:本题考查了二次函数与一元二次方程的关系、直角三角形的判定等知识.综合性较强,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=x2-8x+c的顶点在x轴上,则c等于(  )
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范围,并证明A、B两点都在原点O的左侧;
(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.
精英家教网(1)求b+c的值;
(2)若点C在抛物线上,且四边形OABC是平行四边形,试求抛物线的解析式;
(3)在(2)的条件下,作∠OBC的角平分线,与抛物线交于点P,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过A(0,3),B(1,0)两点,顶点为M.
(1)求b、c的值;
(2)将△OAB绕点B顺时针旋转90°后,点A落到点C的位置,该抛物线沿y轴上下平移后经过点C,求平移后所得抛物线的表达式;
(3)设(2)中平移后所得的抛物线与y轴的交点为A1,顶点为M1,若点P在平移后的抛物线上,且满足△PMM1的面积是△PAA1面积的3倍,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黔南州)已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m+2011的值为(  )

查看答案和解析>>

同步练习册答案