精英家教网 > 初中数学 > 题目详情
7.点A(3,5)、B(-3,m)在反比例函数y=kx-1上,则m=-5.

分析 利用待定系数法求出k的值,代入点B的横坐标计算即可.

解答 解:∵点A(3,5)在反比例函数y=kx-1上,
∴k=xy=15,
则反比例函数的解析式为:y=15x-1
∴当x=-3时,m=-5,
故答案为:-5.

点评 本题考查的是反比例函数图象上点的坐标特征,掌握反比例函数图象上的点的坐标满足函数解析式是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.已知,矩形ABCD中,AB=4cm,AD=2AB,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;
(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,
①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒.当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值;
②若点P、Q的速度分别为v1、v2(cm/s),点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,试探究a与b满足的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,AC是正方形ABCD的对角线.点E为射线CB上一个动点(点E不与点C,B重合),连接AE,点F在直线AC上,且EF=AE.

(1)点E在线段CB上,如图1所示;
①若∠BAE=10°,求∠CEF的度数;
②用等式表示线段CD,CE,CF之间的数量关系,并证明.
(2)如图2,点E在线段CB的延长线上;请你依题意补全图2,并直接写出线段CD,CE,CF之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.已知a,b,c满足|2a-4|+|b+2|+$\sqrt{(a-3){b}^{2}}$+a2+c2=2+2ac,则a-b+c的值为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,已知双曲线y1=$\frac{1}{x}$(x>0),y2=$\frac{4}{x}$(x>0),点P为双曲线y2=$\frac{4}{x}$上的一点,且PA⊥x轴于点A,PB⊥y轴于点B,PA,PB分别交双曲线y1=$\frac{1}{x}$于D,C两点,则△PCD的面积是$\frac{9}{8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.若一次函数y=(1-2m)x+m的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1<y2,且与y轴相交于正半轴,则 m的取值范围是(  )
A.m>0B.m<$\frac{1}{2}$C.0<m<$\frac{1}{2}$D..m>$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知双曲线y=-$\frac{4}{x}$上一点P的横坐标为-$\frac{2}{3}$,P点关于y轴的对称点是Q,双曲线y=$\frac{k}{x}$经过点Q.
(1)求y=$\frac{k}{x}$的表达式;
(2)说出双曲线y=$\frac{k}{x}$所在的象限以及在每个象限内y随x值的增大而变化的情况.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,在平面直角坐标系xOy中,已知第一象限内的点A在反比例函数y=$\frac{2}{x}$的图象上,第二象限内的点B在反比例函数y=$\frac{k}{x}$的图象上,连接OA、OB,若OA⊥OB,OB=$\frac{\sqrt{2}}{2}$OA,则k的值为(  )
A.1B.-$\frac{1}{2}$C.-1D.-$\frac{3}{2}$

查看答案和解析>>

同步练习册答案