精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知正比例函数和反比例函数的图象都经过点A(3,3).
(1)求正比例函数和反比例函数的解析式;
(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;
(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的三角形的面积.
分析:(1)利用待定系数法,由正比例函数和反比例函数的图象都经过点A(3,3),即可求得解析式;
(2)由点B在反比例函数图象上,即可求得m的值;又由此一次函数是正比例函数平移得到的,可知一次函数与反比例函数的比例系数相同,代入点B的坐标即可求得解析式;
(3)构造直角梯形AEFD,则通过求解△ABE、△BDF与直角梯形ADFE的面积即可求得△ABD的面积.
解答:解:(1)设正比例函数的解析式为y=ax,反比例函数的解析式为y=
b
x

∵正比例函数和反比例函数的图象都经过点A(3,3),
∴3=3a,3=
b
3

∴a=1,b=9,
∴正比例函数的解析式为y=x,反比例函数的解析式为y=
9
x


(2)∵点B在反比例函数上,
∴m=
9
6
=
3
2
精英家教网
∴B点的坐标为(6,
3
2
),
∵直线BD是直线OA平移后所得的直线,
∴可设直线BD的解析式为y=x+b,
3
2
=6+b,
∴b=-
9
2

∴这个一次函数的解析式为y=x-
9
2


(3)过点B作EF∥y轴,过点A作AE∥x轴交EF于E,过点D作DF∥x轴交EF于F,
∴点E的坐标为(6,3),点F的坐标为(6,-
9
2
),
∵点D在直线BD上,
∴点D的坐标为(0,-
9
2
),
∴AE=3,EF=3+
9
2
=
15
2
,DF=6,BE=3-
3
2
=
3
2
,BF=
9
2
+
3
2
=6,
∴S△ABD=S梯形AEFD-S△ABE-S△BDF
=
1
2
(AE+DF)•EF-
1
2
AE•BE-
1
2
DF•EF
=
1
2
×(3+6)×
15
2
-
1
2
×3×
3
2
-
1
2
×6×6=
27
2
点评:此题考查了待定系数法求函数的解析式与三角形面积的求解方法等知识.主要考查学生数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知正比例函数和反比例函数的图象都经过点A(3,3).
(1)求正比例函数和反比例函数的解析式;
(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;
(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的二次函数的解析式;
(4)在第(3)问的条件下,二次函数在第一象限的图象上是否存在点E,使四边形OECD的面积S1与四精英家教网边形OABD的面积S满足:S1=
23
S?若存在,求点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知正比例函数y=ax与反比例函数y=
kx
的图象交于点A(3,2)
(1)求上述两函数的表达式;
(2)M(m,n)是反比例函数图象上的一个动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A点作直线AC∥y轴交x轴于点C,交直线MB于点D.若s四边形OADM=6,求点M的坐标,并判断线段BM与DM的大小关系,说明理由;
(3)探索:x轴上是否存在点P.使△OAP是等腰三角形?若存在,求出点P的坐标; 若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正比例函数y=3x与反比例函数y=
kx
(k≠0)
的图象都经过点A和点B,点A的横坐精英家教网标为1,过点A作x轴的垂线,垂足为M,连接BM.
求:(1)这个反比例函数的解析式;
(2)△ABM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知正比例函数y=kx的图象经过点A(-2
3
,a),过点A作AB⊥x轴于点B,△A0B的面积为4
3

(1)求k和a的值;
(2)若一次函数y=nx+2的图象经过点A,并且与X轴相交于点M,问:在x轴上是否存在点P,使得以三点P、A、M组成的三角形AMP为等腰三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案