分析 根据图中所示,利用勾股定理求出每个边长,然后根据无理数的定义即可得出答案.
解答 解:由勾股定理得:AB=$\sqrt{{4}^{2}+{1}^{2}}$=$\sqrt{17}$,AC=$\sqrt{{2}^{2}+{4}^{2}}$=2$\sqrt{5}$,BC=$\sqrt{{2}^{2}+{3}^{2}}$=$\sqrt{13}$,
长度为无理数的边及边长是AB=$\sqrt{17}$,AC=2$\sqrt{5}$,BC=$\sqrt{13}$;
故答案为:AB=$\sqrt{17}$,AC=2$\sqrt{5}$,BC=$\sqrt{13}$.
点评 此题考查了勾股定理的应用.要注意格点三角形的三边的求解方法:借助于直角三角形,用勾股定理求解.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com