精英家教网 > 初中数学 > 题目详情
如图,直线与y=2x双曲线y=
8
x
相交于点A、E,直线AB与双曲线交于点B,与x轴、y轴分别交于点C、D,且B点横坐标等于纵坐标的两倍,直线EB交x轴于点F,
(1)求直线AB的解析式;
(2)求证:△COD△CBF.
(1)∵直线与y=2x双曲线y=
8
x
相交于点A、E,
y=2x
y=
8
x

解得:
x1=2
y1=4
x2=-2
y2=-4

∴A点坐标为:(-2,-4),E点坐标为:(2,4),
∵B点横坐标等于纵坐标的两倍,
∴设B点坐标为:(2x,x),
∴2x•x=8,
即x 2=4,
解得:x1=2,x2=-2(不合题意舍去),
∴B点坐标为:(4,2),
设直线AB的解析式为:y=ax+b,
故将A,B点坐标代入解析式得:
-2a+b=-4
4a+b=2

解得:
a=1
b=-2

故直线AB的解析式为:y=x-2;

(2)过点B作BM⊥OF于点M,
∵直线AB的解析式为:y=x-2,
∴y=0时,x=2,则图象与x轴交于点C(2,0),进而得出图象与y轴交于点(0,2),
∴DO=CO=2,
∴CD=2
2

设直线EB的解析式为:y=cx+d,
将E,B点代入得:
2c+d=4
4c+d=2

解得:
c=-1
d=6

故直线EB的解析式为:y=-x+6,
当y=0,则x=6,
故F点坐标为:(6,0),
则FC=4,
又∵B点坐标为:(4,2),CO=2,
∴MO=4,BM=2,
∴CM=2,MF=2,
∴BC=CF=2
2

CO
BC
=
DO
BF
=
CD
FC
=
2
2
2
=
2
2

∴△COD△CBF.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,反比例函数的图象经过点P(-1,3)
(1)求该反比例函数的解析式;
(2)当y≤3时,根据图象请直接写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=kx+4的图象与反比例函数y=
m
x
的图象交于点P、Q,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,OC=OA.
(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

近视眼镜的度数y(度)与镜片焦距x(米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y与镜片焦距x之间的函数关系式为______.(无需确定x的取值范围)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,等边△OAB和等边△AFE的一边都在x轴上,双曲线y=
k
x
(k>0)经过边OB的中点C和AE的中点D.已知等边△OAB的边长为4.
(1)求该双曲线所表示的函数解析式;
(2)求等边△AEF的边长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=3x+3与x轴交于A点,与y轴交于B点,以AB为直角边作等腰Rt△ABC,∠BAC=90°,AC=AB,双曲线y=
k
x
经过C点
①求双曲线的解析式;
②点P为第四象限双曲线上一点,连接BP,点Q(x、y)为线段AB上一动点,过Q作QD⊥BP,若QD=n,问是否存在一点P使y+n=3?若存在,求直线BP解析式;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知双曲线y=
k
x
(x>0)经过矩形OABC的边AB、BC上的点F、E,其中CE=
1
3
CB,AF=
1
3
AB,且四边形OEBF的面积为2,则k的值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知y=y1-y2,y1与x+2成正比例,y2与x成反比例,且当x=1时,y=4;当x=2时,y=7.
(1)求y与x的函数关系; 
(2)求x=
1
2
时,y的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,M为双曲线y=
4
x
上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m于点D、C两点,若直线y=-x+m与y轴交于点A,与x轴相交于点B,则AD•BC的值为______.

查看答案和解析>>

同步练习册答案