精英家教网 > 初中数学 > 题目详情
13.已知x,y,z为三个非负实数,满足$\left\{\begin{array}{l}{x+y+z=30}\\{2x+3y+4z=100}\end{array}\right.$,若s=3x+2y+5z,则s的最小值为90.

分析 把$\left\{\begin{array}{l}{x+y+z=30}\\{2x+3y+4z=100}\end{array}\right.$看作为关于x和y的二元一次方程组,然后利用加减消元法可得到x=z-10,y=-2z+40,把x=z-10,y=-2z+40代入s=3x+2y+5z中得S=4z+50,再根据x,y,z为三个非负实数,即z-10≥0,-2z+40≥0,z≥0,解得10≤z≤20,然后根据一次函数的性质求解.

解答 解:$\left\{\begin{array}{l}{x+y+z=30①}\\{2x+3y+4z=100②}\end{array}\right.$,
①×3-②得3x-2x+3z-4z=-10,
解得x=z-10,
①×2-②得2y-3y+2z-4z=-40,
解得y=-2z+40;
∵x=z-10,y=-2z+40;
∴S=3(z-10)+2(-2z+40)+5z
=4z+50,
∵x,y,z为三个非负实数,
∴z-10≥0,-2z+40≥0,z≥0,
∴10≤z≤20,
当z=10时,S有最小值,最小值=40+50=90.
故答案为90.

点评 本题考查了三元一次方程组:利用加减消元法或代入消元法把三元一次方程组转化为二元一次方程组求解.也考查了一次函数的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

3.如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC长为半径作圆弧交边AB于点D.若  AC=3,BC=4.则BD的长是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.一个不透明的袋中装有红、黄、白三种颜色球共50个,它们除颜色外都相同,其中黄球个数是白球个数的3倍少5个,已知从袋中摸出一个球是红球的概率是$\frac{3}{10}$.
(1)求袋中红球的个数;
(2)求从袋中摸出一个球是白球的概率;
(3)取走5个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图:在平面直角坐标系xOy中,已知正比例函数$y=\frac{4}{3}x$与一次函数y=-x+7的图象交于点A.
(1)求点A的坐标;
(2)在x轴上确定点M,使得△AOM是等腰三角形,请直接写出点M的坐标;
(3)如图,设x轴上一点P(a,0),过点P作x轴的垂线,分别交$y=\frac{4}{3}x$和y=-x+7的图象于点B、C,连接OC,若$BP=\frac{8}{5}OA$,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,已知直线y=x+1与y轴交于点A,一次函数y=kx+b的图象经过点B(0,-1),与x轴以及y=x+1的图象分别交于点C、D,且点D的坐标为(1,n).
(1)则n=2,k=3,b=-1;
(2)求四边形AOCD的面积;
(3)在x轴上是否存在点P,使得以点P,C,D为顶点的三角形是直角三角形?若存在求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα=$\frac{1}{2}$,tanβ=$\frac{3}{2}$,以O为原点,OA所在直线为x轴建立直角坐标系.
(1)求点P的坐标;
(2)水面上升1m,水面宽多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.下面有3个命题:①同位角相等;②平行于同一直线的两直线互相平行;③平方后等于4的数一定是2.其中②是真命题(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,在Rt△ABC中,∠BAC=90°,AB=AC=4,点E、F是高AD上的三等分点,则图中阴影部分的面积是(  )
A.4B.8C.16D.24

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.下列计算正确的是(  )
A.a3•a3=2a6B.a3+a3=a6C.${a^3}÷{a^5}=\frac{1}{a^2}$D.(a33=a6

查看答案和解析>>

同步练习册答案