精英家教网 > 初中数学 > 题目详情
(2013•徐州)如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)
(1)若△CEF与△ABC相似.
①当AC=BC=2时,AD的长为
2
2

②当AC=3,BC=4时,AD的长为
1.8或2.5
1.8或2.5

(2)当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.
分析:(1)若△CEF与△ABC相似.
①当AC=BC=2时,△ABC为等腰直角三角形;
②当AC=3,BC=4时,分两种情况:
(I)若CE:CF=3:4,如答图2所示,此时EF∥AB,CD为AB边上的高;
(II)若CF:CE=3:4,如答图3所示.由相似三角形角之间的关系,可以推出∠A=∠ECD与∠B=∠FCD,从而得到CD=AD=BD,即D点为AB的中点;
(2)当点D是AB的中点时,△CEF与△ABC相似.可以推出∠CFE=∠A,∠C=∠C,从而可以证明两个三角形相似.
解答:解:(1)若△CEF与△ABC相似.
①当AC=BC=2时,△ABC为等腰直角三角形,如答图1所示.

此时D为AB边中点,AD=
2
2
AC=
2


②当AC=3,BC=4时,有两种情况:
(I)若CE:CF=3:4,如答图2所示.

∵CE:CF=AC:BC,∴EF∥AB.
由折叠性质可知,CD⊥EF,∴CD⊥AB,即此时CD为AB边上的高.
在Rt△ABC中,AC=3,BC=4,
∴AB=5,
∴cosA=
3
5

AD=AC•cosA=3×
3
5
=1.8;

(II)若CF:CE=3:4,如答图3所示.

∵△CEF∽△CBA,∴∠CEF=∠B.
由折叠性质可知,∠CEF+∠ECD=90°,
又∵∠A+∠B=90°,
∴∠A=∠ECD,∴AD=CD.
同理可得:∠B=∠FCD,CD=BD,
∴此时AD=
1
2
AB=
1
2
×5=2.5.
综上所述,当AC=3,BC=4时,AD的长为1.8或2.5.

(2)当点D是AB的中点时,△CEF与△ABC相似.理由如下:
如答图3所示,连接CD,与EF交于点Q.
∵CD是Rt△ABC的中线,∴CD=DB=
1
2
AB,∴∠DCB=∠B.
由折叠性质可知,∠CQF=∠DQF=90°,∴∠DCB+∠CFE=90°,
∵∠B+∠A=90°,∴∠CFE=∠A,
又∵∠C=∠C,∴△CEF∽△CBA.
点评:本题是几何综合题,考查了几何图形折叠问题和相似三角形的判定与性质.第(1)②问需要分两种情况分别计算,此处容易漏解,需要引起注意.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•徐州)如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,则正八边形的面积为
40
40
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•徐州)如图,点A、B、C在⊙O上,若∠C=30°,则∠AOB的度数为
60
60
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•徐州)如图,四边形ABCD是平行四边形,DE平分∠ADC交AB于点E,BF平分∠ABC,交CD于点F.
(1)求证:DE=BF;
(2)连接EF,写出图中所有的全等三角形.(不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•徐州)如图,二次函数y=
1
2
x2+bx-
3
2
的图象与x轴交于点A(-3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.
(1)请直接写出点D的坐标:
(-3,4)
(-3,4)

(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;
(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案