精英家教网 > 初中数学 > 题目详情
17.(1)(-1)2006-(π-2)0+($\frac{1}{2}$)-1
(2)$\left\{\begin{array}{l}{5x+2y=25}\\{3x+4y=15}\end{array}\right.$.

分析 (1)原式利用零指数幂、负整数指数幂法则,以及乘方的意义计算即可得到结果;
(2)方程组利用加减消元法求出解即可.

解答 解:(1)原式=1-1+2=2;
(2)$\left\{\begin{array}{l}{5x+2y=25①}\\{3x+4y=15②}\end{array}\right.$,
①×2-②得:7x=35,即x=5,
把x=5代入①得:y=0,
则方程组的解为$\left\{\begin{array}{l}{x=5}\\{y=0}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.用科学记数法表示下列各小题中的量
(1)光的速度是300000000米/秒;
(2)银河系中的恒星约有160000000000个;
(3)地球离太阳大约有一亿五千万千米;
(4)月球质量约为734734$\underset{\underbrace{00…0}}{13个零}$万吨.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,一次函数y=ax+b(a≠0)的图象与反比例函数y=$\frac{k}{x}$(k≠0)的图象交于第二象限的点A(m,1),且与y轴交于点C.过点A作x轴的垂线,垂足为点D,连接CD,已知△ADC的面积为$\frac{3}{2}$,且tan∠ACO=1.
(1)求这个一次函数和反比例函数的解析式;
(2)若点E是点C关于x轴的对称点,点B的纵坐标为-3,求△ABE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.若关于x的方程-5(x+1)=-11+x与方程8-a=2(x+1)有相同的解,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.已知点M(-3,0),点N 是点M关于原点的对称点,点A是函数y=-x+1 图象上的一点,若△AMN是直角三角形,则点A的坐标为(-3,4)、(3,-2)、($\frac{1+\sqrt{17}}{2}$,$\frac{1-\sqrt{17}}{2}$)或($\frac{1-\sqrt{17}}{2}$,$\frac{1+\sqrt{17}}{2}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.为绿化城市,我县绿化改造工程正如火如荼的进行.某施工队计划购买甲、乙两种树苗共400棵,对光明路的某标段道路进行绿化改造.已知甲种树苗每棵200元,乙种树苗每棵300元.
(1)若购买两种树苗的总金额为85000元,求需购买甲、乙两种树苗各多少棵?
(2)若购买甲种树苗的金额不多于购买乙种树苗的金额,至多应购买甲种树苗多少棵?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.抛物线y=x2-2x-3的图象交x轴与A,B两点,在该二次函数的图象上是否存在一点P(且在y轴的右侧),使得△ABP的面积是10?若存在请求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年9、10月份的用水量和所交水费如表所示:
设某户每月用水量x(立方米),应交水费y (元).
月份用水量(m3收费(元)
957.5
10927
(1)求a,c的值;
(2)当x≤6,x≥6时,分别写出y与x的函数关系式;
(3)若该户11月份用水量为10立方米,求该户11月份水费是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.根据下面给出的数轴,解答下面的问题:

(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:1   B:-2.5;
(2)观察数轴,与点A的距离为4的点表示的数是:-3或5;
(3)若将数轴折叠,使得A点与-3表示的点重合,则B点与数0.5表示的点重合;
(4)若数轴上M、N两点之间的距离为2016(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是:M:-1009   N:1007.

查看答案和解析>>

同步练习册答案