【题目】(本题10分)如图,在平面直角坐标系xOy中,直线与y轴交于点C,与x轴交于点B,抛物线经过B、C两点,与x轴的正半轴交于另一点A,且OA :OC="2" :7.
(1)求抛物线的解析式;
(2)点D为线段CB上,点P在对称轴的右侧抛物线上,PD=PB,当tan∠PDB=2,求P点的坐标;
(3)在(2)的条件下,点Q(7,m)在第四象限内,点R在对称轴的右侧抛物线上,若以点P、D、Q、R为顶点的四边形为平行四边形,求点Q、R的坐标.
【答案】(1)y=-x2+x-7 ;(2)P(8,-3);
(3)R(10,-12),Q(7,-11)或R(6,2),Q(7,-7)
【解析】试题分析:(1)有直线解析式可以求出C点的坐标,再利用OA :OC="2" :7.求出A的坐标.最后把A、C代入抛物线解析式求出即可.
(2)先求出B的坐标可得∠OCB=∠OBC=45°,又过P作PE⊥BC于点E,所以∠CFG=∠OCB==45°就得到线段EF、BF、EP的数量关系;又tan∠PDB=2可以得到线段EP、DE、PD的数量关系,然后设出P、F的坐标利用他们的纵坐标相等即可求出点的坐标;
(3)若以点P、D、Q、R为顶点的四边形为平行四边形有两种情况:线段PD有可能是边也有可能是对角线.
当PD是边时,即DP∥QR时,∵B(7,0),Q(7,n)∴BQ∥y轴
过P作PN∥BQ,过D作DN⊥BQ交PN于点N,过R作RM⊥BQ于点M. 设PD交BQ于点T,DN交BM于点I
即可证明△RMQ≌△DNP,再求出D点的坐标,设R点的横坐标为t,∵RM=DN,∴t-7=8-5解得t=10,再把t=10带入抛物线即可求出R、Q;当PD是对角线时,同理求出.
试题解析:(1)∵直线y=kx-7与y轴的负半轴交于点C ∴C(0,-7) ∴OC=7
∵抛物线y=ax2+bx+14a经过点C,∴14a=-7,∴a =-∴y=-x2+bx-7
∵OA :OC="2" :7.∴OA=2,∴A(2,0)∵抛物线y=-x2+bx-7经过点A
∴b=∴抛物线的解析式为y=-x2+x-7
(2)如图1,∵抛物线y=-x2+x-7经过B点, 令y=0解得x=7或x=2(舍)∴B(7,0)
∴OB=7∴OC=OB∴∠OCB=∠OBC=45°
过点P作PF⊥x轴于点G,交CB延长线于点F,
则PF∥y轴,∴∠CFG=∠OCB==45°
∴BF=GF
过P作PE⊥BC于点E,
∵PD=PB
∴∠PBD=∠PDB
∴tan∠PBD=tan∠PDB=2
∴PE=2BE
∵EF=PE ∴BF=BE
∴PF=PE=2BE=2BF=4GF,
∴PG="3GF"
∵直线y=kx-7过B点 ∴k=1 ∴y=x-7
设F(),则P()
因为点P在抛物线y=-x2+x-7上,
所以,
解得m=7(舍)或m=8
∴P(8,-3)
如图2,当DP∥QR时,即四边形DQRP是平行四边形 ∵B(7,0),Q(7,n)∴BQ∥y轴
过P作PN∥BQ,过D作DN⊥BQ交PN于点N,
过R作RM⊥BQ于点M.
设PD交BQ于点T,DN交BM于点I
∴∠DTB=∠DPN,∠PTQ=∠RQM, ∵∠DTB=∠PTQ
∴∠DPN=∠RQM
∵四边形DPRQ是平行四边形
∴DP=RQ
∵∠RMQ=∠DNP,∴△RMQ≌△DNP
∴RM=DN,MQ=PN
由(2)可求F(8,1),GF=1,BD=2BE=BF=
∵∠QBC=45°,∴BI=DI=2 ∴D(5,-2)
设R点的横坐标为t,∵RM=DN,∴t-7=8-5
解得t=10
∵点R在抛物线y=-x2+x-7 上,
∴当t=10时,
∴R(10,-12)
∵MQ=PN
∴3-2=-12-n,∴n=-11
∴R(10,-12),Q(7,-11)
如图3,当DR∥QP时,即四边形DQPR是平行四边形
同理可求得R(6,2),Q(7,-7)
科目:初中数学 来源: 题型:
【题目】如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a,b满足 +(c-7)2=0.
(1) a= ,b= ,c= .
(2) 若将数轴折叠,使得A点与C点重合,则点B与数 表示的点重合.
(3) 点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)
(4) 请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校组织了一次防溺水、防交通事故、防食物中毒、防校园欺凌及其他各种安全意识的调查活动,了解同学们在哪些方面的安全意识薄弱,便于今后更好地开展安全教育活动.根据调查结果,绘制出图1,图2两幅不完整的统计图.
请结合图中的信息解答下列问题:
(1)本次调查的人数为___________,其中防校园欺凌意识薄弱的人数占_________%;
(2)补全条形统计图;
(3)若该校共有1500名学生,请估计该校学生中防溺水意识薄弱的人数;
(4)请你根据题中的信息,给该校的安全教育提一个合理的建议.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为积极响应政府提出的“绿色发展低碳出行”号召,某自行车厂决定生产一批共享单车投入市场.该厂原计划一周生产1400辆共享单车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):
⑴根据记录可知前三天共生产 辆;
⑵产量最多的一天比产量最少的一天多生产 辆;
⑶该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,l1反映了某公司销售一种医疗器械的销售收入(万元)与销售量(台)之间的关系,l2反映了该公司销售该种医疗器械的销售成本(万元)与销售量(台)之间的关系.当销售收入大于销售成本时,该医疗器械才开始赢利.根据图象,则下列判断中错误的是( )
A. 当销售量为4台时,该公司赢利4万元
B. 当销售量多于4台时,该公司才开始赢利
C. 当销售量为2台时,该公司亏本1万元
D. 当销售量为6台时,该公司赢利1万元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:
血型 | A | B | AB | O |
人数 |
| 10 | 5 |
|
(1)这次随机抽取的献血者人数为 人,m= ;
(2)补全上表中的数据;
(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答:
从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小敏为了解本市的空气质量情况,从市环保局随机抽取了若干天的空气质量情况作为标本进行统计,绘制成如图所示的条形统计图和扇形统计图(部分信息为给出)
请你根据图中提供的信息,解答下列问题:
(1)本次调查中共抽取了多少天的空气质量情况作为标本?
(2)求轻微污染天数并补全条形统计图;
(3)请你估计该市这一年(365天)空气质量达到“优”和“良”的总天数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料、并完成任务.
无限循环小数化分数
我们知道分数写出小数形式即,反过来,无限循环小数写成分数形式即,一般地,任何一个无限循环小数都可以写成分数形式.
先以无限循环小数为例进行讨论.
设,由可知,,所以,解方程,得,于是,得.
再以无限循环小数为例,做进一步的讨论.
无限循环小数,它的循环节有两位,类比上面的讨论可以想到如下做法.
设,由可知,.
所以.解方程,得,于是,.
类比应用(直接写出答案,不写过程)
① .② .③ .
能力提升
将化为分数形式,写出过程.
拓展探究
① ;
②比较大小 1(填“”或“”或“”);
③若,则 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的A′处,若AO=OB=2,则阴影部分面积为( )
A. π B. π﹣1 C. +1 D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com