精英家教网 > 初中数学 > 题目详情
(2004•福州)下列图形中能够用来作平面镶嵌的是( )
A.正八边形
B.正七边形
C.正六边形
D.正五边形
【答案】分析:几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.
解答:解:A、正八边形的每个内角为:180°-360°÷8=135°,不能整除360°,不能密铺;
B、正七边形每个内角为:180°-360°÷7=900÷7,不能整除360°,不能密铺;
C、正六边形的每个内角是120°,能整除360°,能密铺;
D、正五边形的每个内角是108°,不能整除360°,不能密铺.
故选C.
点评:本题考查的知识点是:一种正多边形的镶嵌应符合一个内角度数能整除360°.
练习册系列答案
相关习题

科目:初中数学 来源:2004年全国中考数学试题汇编《图形的相似》(05)(解析版) 题型:解答题

(2004•福州)如图,在边长为4的正方形ABCD中,E是DC中点,点F在BC边上,且CF=1,在△AEF中作正方形A1B1C1D1,使边A1B1在AF上,其余两个顶点C1、D1分别在EF和AE上.
(1)请直接写出图中两直角边之比等于1:2的三个直角三角形(不另添加字母及辅助线);
(2)求AF的长及正方形A1B1C1D1的边长;
(3)在(2)的条件下,取出△AEF,将△EC1D1沿直线C1D1、△C1FB1沿直线C1B1分别向正方形A1B1C1D1内折叠,求小正方形A1B1C1D1未被两个折叠三角覆盖的四边形面积.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《图形的对称》(04)(解析版) 题型:解答题

(2004•福州)如图,在边长为4的正方形ABCD中,E是DC中点,点F在BC边上,且CF=1,在△AEF中作正方形A1B1C1D1,使边A1B1在AF上,其余两个顶点C1、D1分别在EF和AE上.
(1)请直接写出图中两直角边之比等于1:2的三个直角三角形(不另添加字母及辅助线);
(2)求AF的长及正方形A1B1C1D1的边长;
(3)在(2)的条件下,取出△AEF,将△EC1D1沿直线C1D1、△C1FB1沿直线C1B1分别向正方形A1B1C1D1内折叠,求小正方形A1B1C1D1未被两个折叠三角覆盖的四边形面积.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《四边形》(07)(解析版) 题型:解答题

(2004•福州)如图,在边长为4的正方形ABCD中,E是DC中点,点F在BC边上,且CF=1,在△AEF中作正方形A1B1C1D1,使边A1B1在AF上,其余两个顶点C1、D1分别在EF和AE上.
(1)请直接写出图中两直角边之比等于1:2的三个直角三角形(不另添加字母及辅助线);
(2)求AF的长及正方形A1B1C1D1的边长;
(3)在(2)的条件下,取出△AEF,将△EC1D1沿直线C1D1、△C1FB1沿直线C1B1分别向正方形A1B1C1D1内折叠,求小正方形A1B1C1D1未被两个折叠三角覆盖的四边形面积.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《三角形》(11)(解析版) 题型:解答题

(2004•福州)如图,在边长为4的正方形ABCD中,E是DC中点,点F在BC边上,且CF=1,在△AEF中作正方形A1B1C1D1,使边A1B1在AF上,其余两个顶点C1、D1分别在EF和AE上.
(1)请直接写出图中两直角边之比等于1:2的三个直角三角形(不另添加字母及辅助线);
(2)求AF的长及正方形A1B1C1D1的边长;
(3)在(2)的条件下,取出△AEF,将△EC1D1沿直线C1D1、△C1FB1沿直线C1B1分别向正方形A1B1C1D1内折叠,求小正方形A1B1C1D1未被两个折叠三角覆盖的四边形面积.

查看答案和解析>>

科目:初中数学 来源:2004年福建省福州市中考数学试卷(解析版) 题型:解答题

(2004•福州)如图,在边长为4的正方形ABCD中,E是DC中点,点F在BC边上,且CF=1,在△AEF中作正方形A1B1C1D1,使边A1B1在AF上,其余两个顶点C1、D1分别在EF和AE上.
(1)请直接写出图中两直角边之比等于1:2的三个直角三角形(不另添加字母及辅助线);
(2)求AF的长及正方形A1B1C1D1的边长;
(3)在(2)的条件下,取出△AEF,将△EC1D1沿直线C1D1、△C1FB1沿直线C1B1分别向正方形A1B1C1D1内折叠,求小正方形A1B1C1D1未被两个折叠三角覆盖的四边形面积.

查看答案和解析>>

同步练习册答案