精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,抛物线y=ax2+bx+4经过A(﹣3,0)、B(4,0)两点,且与y轴交于点C,点D在x轴的负半轴上,且BD=BC,有一动点P从点A出发,沿线段AB以每秒1个单位长度的速度向点B移动,同时另一个动点Q从点C出发,沿线段CA以某一速度向点A移动.

(1)求该抛物线的解析式;
(2)若经过t秒的移动,线段PQ被CD垂直平分,求此时t的值;
(3)该抛物线的对称轴上是否存在一点M,使MQ+MA的值最小?若存在,求出点M的坐标;若不存在,请说明理由.

【答案】
(1)解:∵抛物线y=ax2+bx+4经过A(﹣3,0),B(4,0)两点,

,解得

∴所求抛物线的解析式为:y=﹣ x2+ x+4


(2)解:如图1,依题意知AP=t,连接DQ,

∵A(﹣3,0),B(4,0),C(0,4),

∴AC=5,BC=4 ,AB=7.

∵BD=BC,

∴AD=AB﹣BD=7﹣4

∵CD垂直平分PQ,

∴QD=DP,∠CDQ=∠CDP.

∵BD=BC,

∴∠DCB=∠CDB.

∴∠CDQ=∠DCB.

∴DQ∥BC.

∴△ADQ∽△ABC.

=

=

=

解得DP=4

∴AP=AD+DP=

∴线段PQ被CD垂直平分时,t的值为


(3)解:如图2,设抛物线y=﹣ x2+ x+4的对称轴x= 与x轴交于点E.点A,B关于对称轴x= 对称,连接BQ交该对称轴于点M.

则MQ+MA=MQ+MB,即MQ+MA=BQ,

∵当BQ⊥AC时,BQ最小,此时,∠EBM=∠ACO,

∴tan∠EBM=tan∠ACO=

=

= ,解ME=

∴M( ),即在抛物线y=﹣ x2+ x+4的对称轴上存在一点M( ),使得MQ+MA的值最小


【解析】(1)利用待定系数法,把A、B坐标代入解析式,得到方程组,求出a、b即可;(2)由垂直平分线性质和已知条件可得出△ADQ∽△ABC,对应边成比例,求出DP,进而求出AP=AD+DP,即可求出时间t;(2)要求MQ+MA的值最小,可采用对称法,MQ+MA可转化为MQ+MB,MQ+MA=BQ,即求BQ的最小值,当BQ⊥AC时,BQ最小,可利用tan∠EBM=tan∠ACO= ,列出等式,求出M纵坐标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,E、F、G、H依次是各边中点,O是四边形内一点,若S四边形AEOH=3,S四边形BFOE=4,S四边形CGOF=5,则S四边形DHOG=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一段抛物线y=﹣x(x﹣3)(0≤x≤3),记为C1 , 它与x轴交于点O,A1;将C1绕点A1旋转180°得C2 , 交x 轴于点A2;将C2绕点A2旋转180°得C3 , 交x 轴于点A3;…如此进行下去,得到一条“波浪线”.若点P(37,m)在此“波浪线”上,则m的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】装饰公司为小明家设计电视背景墙时需要AB型板材若干块,A型板材规格是abB型板材规格是bb.现只能购得规格是150b的标准板材.(单位:cm

1)若设a60cmb30cm.一张标准板材尽可能多的裁出A型、B型板材,共有下表三种裁法,下图是裁法一的裁剪示意图.

裁法一

裁法二

裁法三

A型板材块数

1

2

0

B型板材块数

3

m

n

则上表中, m=___________ n=__________

2)为了装修的需要,小明家又购买了若干C型板材,其规格是aa,并做成如下图的背景墙.请写出下图中所表示的等式:__________

(3)若给定一个二次三项式2a25ab3b2,试用拼图的方式将其因式分解.(请仿照(2)在几何图形中标上有关数量)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠BAD90°,∠DCB90°,EF分别是BDAC的中点,

1)请你猜测EFAC的位置关系,并给予证明;

2)当AC=8,BD=10时,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下列证明

如图,点DEF分别在ABBCAC上,且DE//ACEF//AB

求证:∠A+B+C=180°

证明:∵DE//AC

∴∠1=________,∠4=________

又∵EF//AB

∴∠3=________

2=________

∴∠2=A

又∵∠1+2+3=180°(平角定义)

∴∠A+B+C=180°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有3个完全相同的小球,把它们分别标号为1,2,3,放在一个不透明的口袋中,从口袋中随机摸出一个小球,记下标号后放回,再从口袋中随机摸出一个小球,记下标号.用画树状图(或列表)的方法,求两次摸出的小球号码恰好都大于1的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,对于点,若点的坐标为,则称点是点的“演化点”.例如,点的“演化点”为,即.

(1)已知点的“演化点”是,则的坐标为________

(2)已知点,且点的“演化点”是,则的面积__________

(3)己知,且点的“演化点”为,当时,___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】白色污染( Whitepollution)是人们对难降解的塑料垃圾(多指塑料袋)污染环境现象的一种形象称谓.为了让全校同学感受丢弃塑料袋对环境的影响,小彬随机抽取某小区户居民,记录了这些家庭年某个月丢弃塑料袋的数量(单位:个)

请根据上述数据,解答以下问题:

1)小彬按“组距为”列出了如下的频数分布表(每组数据含最小值不含最大值),请将表中空缺的部分补充完整,并补全频数直方图;

分组

划记

频数

_______

________

_______

________

合计

/

2)根据(1)中的直方图可以看出,这户居民家这个月丢弃塑料袋的个数在 组的家庭最多;(填分组序号)

3)根据频数分布表,小彬又画出了如图所示的扇形统计图.请将统计图中各组占总数的百分比填在图中,并求出组对应的扇形圆心角的度数;

4)若该小区共有户居民家庭,请你估计每月丢弃的塑料袋数量不小于个的家庭个数.

查看答案和解析>>

同步练习册答案