精英家教网 > 初中数学 > 题目详情
精英家教网梯形ABCD中,AD∥BC,∠BAD=90°,AD=3,BC=5,AE⊥BD,∠C=60°,
求:AE的长.
分析:过点D作DF⊥BC于F,矩形ABFD,推出BF=AD=3,AB=DF,求出CF、CD,由勾股定理求出DF=2
3
AB=2
3
BD=
21
,根据三角形的面积公式得到AB•AD=BD•AE,代入求出即可.
解答:精英家教网解:过点D作DF⊥BC于F,
∴AB∥DF,
∵AD∥BC,
∴四边形ABFD是矩形,
∴BF=AD=3,AB=DF,
∴CF=2,
在Rt△DCF中,
∵∠C=60°,∠DFC=90°,
∴∠FDC=30°
∴CD=4,
由勾股定理得:DF=2
3

AB=2
3

在Rt△DCF中,由勾股定理得:BD=
21

∵AB•AD=BD•AE,
AE=
6
7
7

答:AE的长是
6
7
7
点评:本题主要考查对直角梯形,矩形的性质和判定,勾股定理,含30度角的直角三角形的性质等知识点的理解和掌握,把直角梯形转化成矩形和直角三角形是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.
(1)求证:△MDC是等边三角形;
(2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值?如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE分别交BD、BC于点G、E,连接精英家教网DE.
(1)求证:四边形ABED是菱形;
(2)若ED⊥DC,∠ABC=60°,AB=2,求梯形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB=CD,点E在BC的延长线上,且∠BDE=∠ADC.求证:AB•BD=DE•AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰梯形ABCD中,AD∥BC,AB=5,AD=6,BC=12,点E在AD边上,且AE:ED=1:2,点P是AB边上的一个动点,(P不与A,B重合)过点P作PQ∥CE交BC于点Q,设AP=x,CQ=y,则y与x之间的函数关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠ACB=45°,翻折梯形ABCD,使点C重合于点A,折痕精英家教网分别交边CD、BC于点F、E,若AD=3,BC=12,
求:(1)CE的长;
(2)∠BAE的正切值.

查看答案和解析>>

同步练习册答案