精英家教网 > 初中数学 > 题目详情
如图,点A在y轴上,点B在x轴上,且OA=OB=1,经过原点O的直线l交线段AB于点C,过C作OC的垂线,与直线x=1相交于点P,现将直线l绕O点旋转,使交点C从A向B运动,但P点必须在第一象限内,并记AC的长为t,分析此图后,对下列问题作出探究:
(1)通过动手测量线段OC和CP的长来判断它们之间的大小关系?并证明你得到的结论;
(2)设点P的坐标为(1,b),试写出b关于t的函数关系式和变量t的取值范围。
(3)若题中的“P点必须在第一象限内”改为“P点在直线x=1上”,其他条件不变,求出当△PBC为等腰三角形时点P的坐标。 
解:(1)OC=CP
证明:过点C作ED∥OB交直线x=1于点D,交y轴于点E
∴∠OEC=∠EOB=90°,∠OBD=∠BDE=90°
∴四边形OBDE是矩形 ∴OE=BD
∵OA=OB   ∴∠ACE=∠EAC=45° ∴∠BCD=∠CBD=45° ∴CD=DB   ∴OE=CD  
∵OC⊥CP   ∴∠1+∠3=90° ∴∠2+∠3=90° ∴∠1=∠2
∵∠OEC=∠PDC=90° ∴△OCE≌△CPD  ∴OC=CP 
(2)∵AC=t   ∴AE=
∵AO=1   ∴OE=  ∴BD=  ∴b=PB=DB-DP=-DP  
∵DP=EC=  ∴b=        
∵点P在第一象限内  ∴b=(0≤t<
(3)当t=0时,即点C与点A重合时△PBC为等腰三角形 ∴P(1,1)          
当点P在第四象限且CB=BP时,有BD=CD=
∴BP=BC=CD=-t   ∴DP=BD+BP=+-t
由(2)知,DP=CE=   ∴+-t=
∴t=1   ∴CB=AB-AC=-t=-1
∴PB=CB=-1   
∵点P在第四象限 ∴P(1,1-
综上可知:P点坐标为(1,1)或(1,1-
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,如图,点M在x轴上,以点M为圆心,2.5长为半径的圆交y轴于A、B两点,交x轴于C(精英家教网x1,0)、D(x2,0)两点,(x1<x2),x1、x2是方程x(2x+1)=(x+2)2的两根.
(1)求点C、D及点M的坐标;
(2)若直线y=kx+b切⊙M于点A,交x轴于P,求PA的长;
(3)⊙M上是否存在这样的点Q,使点Q、A、C三点构成的三角形与△AOC相似?若存在,请求出点的坐标,并求出过A、C、Q三点的抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于C,过点C的直线y=2x+b交x轴于D,且⊙P的半径为
5
,AB=4.若函数y=
k
x
(x<0)的图象过C点,则k的值是(  )
A、±4
B、-4
C、-2
5
D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于C,过点C精英家教网的直线y=2x+b交x轴于D,且⊙P的半径为
5
,AB=4.
(1)求点B,P,C的坐标;
(2)求证:CD是⊙P的切线;
(3)若二次函数y=-x2+(a+1)x+6的图象经过点B,求这个二次函数的解析式,并写出使二次函数值小于一次函数y=2x+b值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点A在y轴上,⊙A与x轴交于B、C两点,与y轴交于点D(0,3)和点E(0,精英家教网-1)
(1)求经过B、E、C三点的二次函数的解析式;
(2)若经过第一、二、三象限的一动直线切⊙A于点P(s,t),与x轴交于点M,连接PA并延长与⊙A交于点Q,设Q点的纵坐标为y,求y关于t的函数关系式,并观察图形写出自变量t的取值范围;
(3)在(2)的条件下,当y=0时,求切线PM的解析式,并借助函数图象,求出(1)中抛物线在切线PM下方的点的横坐标x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点I在x轴上,以I为圆心、r为半径的半圆I与x轴相交于点A、B,与y轴相精英家教网交于点D,顺次连接I、D、B三点可以组成等边三角形.过A、B两点的抛物线y=ax2+bx+c的顶点P也在半圆I上.
(1)证明:无论半径r取何值时,点P都在某一个正比例函数的图象上.
(2)已知两点M(0,-1)、N(1、0),且射线MN与抛物线y=ax2+bx+c有两个不同的交点,请确定r的取值范围.
(3)请简要描述符合本题所有条件的抛物线的特征.

查看答案和解析>>

同步练习册答案