B
分析:由a≠0,a+b=-2c,得b=-a-2c,得△=b
2-4ac=(-a-2c)
2-4ac=a
2+4c
2>0,然后分别讨论:c=0,直接求出方程的解;a与c异号;a与c同号,通过根与系数的关系x
1x
2=

,x
1+x
2=

,则判断两根的正负.由此得到正确的选项.
解答:设方程两根分别为x
1,x
2,
由a≠0,a+b=-2c,得b=-a-2c,
∴△=b
2-4ac=(-a-2c)
2-4ac=a
2+4c
2>0,
若c=0,则a+b=0,方程变为ax
2-ax=0,解得x=0或1.
若a与c异号,则x
1x
2=

<0,即两根异号,所以原方程有一正根和一负根.
若a与c同号,由b=-a-2c可得a,b异号;
则x
1x
2=

>0,即两根同号;x
1+x
2=

>0,则方程一定有正根,所以原方程此时有两个正根.
综上所述原方程至少有一个正根.
故答案为B.
点评:本题考查了一元二次方程ax
2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了一元二次方程ax
2+bx+c=0(a≠0,a,b,c为常数)根与系数的关系:x
1+x
2=

,x
1x
2=

.