精英家教网 > 初中数学 > 题目详情
(2010•海沧区质检)如图,正方形ABCD的边长为2
2
,E是边AD上的一个动点(不与A重合),BE交对角线于F,连接
DF.
(1)求证:BF=DF;
(2)设AF=x,△ABF面积为y,求y与x的函数关系式,并画出图象.
分析:(1)根据正方形的对角线平分一组对角可得∠BAC=∠DAC=45°,根据正方形的四条边都相等可得AB=AD,然后利用“边角边”证明△ABF和△ADF全等,根据全等三角形对应边相等即可得证;
(2)过点F作FM⊥AB于点M,根据正方形的性质以及等腰直角三角形的性质求出FM的长度,再利用三角形的面积公式列式整理即可得到y与x的函数关系式.
解答:(1)证明:∵四边形ABCD为正方形,
∴∠BAC=∠DAC=45°,AB=AD,
在△ABF和△ADF中,
AB=AD
∠BAC=∠DAC
AF=AF

∴△ABF≌△ADF(SAS),
∴BF=DF;

(2)解:如图,过点F作FM⊥AB,
∵∠BAC=45°(正方形的对角线平分一组对角),
∴FM=
2
2
AF=
2
2
x,
∴y=
1
2
AB•FM=
1
2
×2
2
×
2
2
x=x,
∵E是边AD上的一个动点,
∴AF的最大值为
1
2
AC=
1
2
×
2
AB=
1
2
×
2
×2
2
=2,
∴自变量的取值范围是0<x≤2,
故y与x的函数关系式为y=x(0<x≤2),图象如图.
点评:本题考查了正方形的性质,全等三角形的判定与性质,以及作正比例函数图象,比较简单,(2)中作辅助线构造等腰直角三角形从而求出AB边上的高是解题的关键,要注意自变量的取值范围.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2010•海沧区质检)抛物线y=x2+2x的顶点坐标是
(-1,-1)
(-1,-1)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•海沧区质检)已知如图,在△ABC中,AD⊥BC,中位线EF=5,AD=8,则△ABC的面积是
40
40

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•海沧区质检)在某次数字变换游戏中,我们把整数0,1,2,…,100称为“旧数”,游戏的变换规则是:将旧数先平方,再除以100,所得到的数称为“新数”. 例如:旧数26的新数为262÷100=6.76
(1)经过上述规则变换后,有人断言:“按照上述变换规则,所有的新数都小于它的旧数.”你认为这种说法对吗?请说明理由,若不对,请举一反例说明.
(2)请求出按照上述规则变换后减小了最多的旧数(要写出解答过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•海沧区质检)在△ABC中,∠ACB为锐角,动点D(异于点B)在射线BC上,连接AD,以AD为边在AD的右侧作正方形ADEF,连接CF.
(1)若AB=AC,∠BAC=90°那么
①如图一,当点D在线段BC上时,线段CF与BD之间的位置、大小关系是
CF=BD,CF⊥BD
CF=BD,CF⊥BD
(直接写出结论)
②如图二,当点D在线段BC的延长上时,①中的结论是否仍然成立?请说明理由.
(2)若AB≠AC,∠BAC≠90°.点D在线段BC上,那么当∠ACB等于多少度时?线段CF与BD之间的位置关系仍然成立.请画出相应图形,并说明理由.

查看答案和解析>>

同步练习册答案