解:(1)∵对称轴MN的解析式为x=-3,∴ON=3,
∵tan∠MON=3,∴MN=9,
∴M(-3,-9),
∴设抛物线C的解析式为y=a(x+3)
2-9,
∵抛物线C经过原点,∴0=a(0+3)
2-9,解得a=1,
∴抛物线C的解析式为y=(x+3)
2-9,即y=x
2+6x;
(2)①∵将抛物线C绕原点O旋转180°得到抛物线C′,
∴抛物线C与抛物线C′关于原点O对称,
∴抛物线C′的解析式为y=-x
2+6x,
∵当y=0时,x=0或6,
∴点A的坐标为(6,0),
∵点B在抛物线C′上,且其横坐标为2,
∴y=-2
2+6×2=8,即点B的坐标为(2,8).

设直线AB的解析式为y=kx+b,
则

,
解得

.
∴直线AB的解析式为y=-2x+12,
∵点P在线段AB上,
∴设点P的坐标为(p,-2p+12),
∴S
△APD=

p(-2p+12)=-p
2+6p=-(p-3)
2+9,
∴当p=3时,△APD面积的最大值为9;
②如图,分别过点E
2、F
2作x轴的垂线,垂足分别为G、H.
根据(2)①知,直线OB解析式为y=4x,直线AB解析式为y=-2x+12.
当0<t≤2时,E
1在OB上,F
1在AB上,
OE=t,EE
1=4t,EG=2

t,OG=t+2

t,GE
2=2t,
OF=6-t,FF
1=2t,HF=

t,OH=6-t-

t,HF
2=t,
∴E(t,0),E
1(t,4t),E
2(t+2

t,2t),
F(6-t,0),F
1(6-t,2t),F
2(6-t-

t,t).
(Ⅰ)若EE
1与FF
1在同一直线上,由t=6-t,得t=3,不符合0<t≤2;
(Ⅱ)若EE
2与F
1F
2在同一直线上,易求得直线EE
2的解析式为y=

x-

t,
将F
1(6-t,2t)代入,得2t=

×(6-t)-

t,
解得t=

;
(Ⅲ)若E
1E
2与FF
2在同一直线上,易求得E
1E
2的解析式为y=-

x+4t+

t,
将F(6-t,0)代入,得0=-

×(6-t)+4t+

t,
解得t=

;
当2<t≤4时,E
1,F
1都在AB上,
OE=t,EE
1=12-2t,EG=6

-

t,OG=6

-

t+t,GE
2=6-t,
OF=6-t,FF
1=2t,HF=

t,OH=6-t-

t,HF
2=t,
∴E(t,0),E
1(t,12-2t),E
2(6

-

t+t,6-t),
F(6-t,0),F
1(6-t,2t),F
2(6-t-

t,t).
(Ⅰ)若EE
1与FF
1在同一直线上,由t=6-t,得t=3;
(Ⅱ)若EE
2与F
1F
2在同一直线上,易求得直线EE
2的解析式为y=

x-

t,
将F
1(6-t,2t)代入,得2t=

×(6-t)-

t,
解得t=

,不符合2<t≤4;
(Ⅲ)E
1E
2与FF
2已在0<t≤2时同一直线上,故当2<t≤4时,E
1E
2与FF
2不可能在同一直线上;
当4<t<6时,由上面讨论的结果,△EE
1E
2与△FF
1F
2的某一边不可能在同一直线上.
综上所述,当△EE
1E
2有一边与△FF
1F
2的某一边在同一直线上时,t的值为

或

或3.
分析:(1)先根据tan∠MON=3求出顶点M的坐标,再利用待定系数法即可求出抛物线C的解析式;
(2)①先求出△APD的面积关于点P横坐标的函数关系式,再应用配方法写成顶点式,然后根据二次函数的性质即可求出最大值;
②分0<t≤2,2<t≤4和4<t<6三种情况讨论,每种情况又分EE
1与FF
1在同一直线上,EE
2与F
1F
2在同一直线上和E
1E
2与FF
2在同一直线上三种情况讨论.
点评:本题考查了二次函数的综合题型,其中涉及到旋转与平移的性质,运用待定系数法求一次函数、二次函数的解析式,函数图象上点的坐标与方程的关系,锐角三角函数的定义,二次函数的最值,等边三角形的性质,三角形的面积求法等知识.在求有关动点问题时要注意分析题意分情况讨论结果,利用数形结合、分类讨论及方程思想是解题的关键.