精英家教网 > 初中数学 > 题目详情
韦达定理:若x1,x2为方程ax2+bx+c=0的两根,则x1+x2=-
b
a
x1x2=
c
a
,已知:m和n是方程2x2-5x-3=0的两根,利用以上材料,不解方程,求:
(1)
1
m
+
1
n

(2)m2+n2的值.
分析:(1)根据m和n是方程2x2-5x-3=0的两根,再根据x1+x2=-
b
a
x1x2=
c
a
,得出m+n和mn的值,再把要求的式子进行变形,再把m+n和mn的值代入即可;
(2)先把m2+n2变形为(m+n)2-2mn,再根据(1)得出的m+n和mn的值,代入进行计算即可.
解答:解:(1)∵m和n是方程2x2-5x-3=0的两根,
∴m+n=
5
2
,mn=-
3
2

1
m
+
1
n
=
n+m
mn
=
5
2
-
3
2
=-
5
3


(2)m2+n2
=(m+n)2-2mn
=(
5
2
2-2×(-
3
2

=
37
4
点评:此题考查了根与系数的关系,将根与系数的关系与代数式变形相结合是本题的关键,用到的知识点是若方程的两根分别为x1,x2,则x1+x2=-
b
a
x1x2=
c
a
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

有一个定理:若x1、x2是一元二次方程ax2+bx+c=0(a≠0,a、b、c为系数且为常数)的两个根,则x1+x2=-
b
a
、x1•x2=
c
a
,这个定理叫做韦达定理.如:x1、x2是方程x2+2x-1=0的两个根,则x1+x2=-2、x1•x2=-1.
若x1、x2是方程x2+mx-2m=0的两个根.(其中m≠0)试求:
(1)x1+x2与x1•x2的值(用含有m的代数式表示).
(2)x12+x22的值(用含有m的代数式表示).[提示:x12+x22=(x1+x22-2x1x2]
(3)若
x1
x2
+
x2
x1
=1
,试求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

若x1,x2是一元二次方程ax2+bx+c=0(a≠0,a,b,c为系数且为常数)的两个根,则x1+x2=-
b
a
,x1•x2=
c
a
.这个定理叫做韦达定理.
如:x1,x2是方程x2+2x-1=0的两个根,则x1+x2=-2、x1•x2=-1
已知:M、N是方程x2-x-1=0的两根,
记S1=M+N;S2=M2+N2,…Sn=Mm+Nn
(1)S1=_____,S2=______,S3=_______,S4=_______,(直接写出答案)
(2)当n为不小于3的整数时,有(1)猜想SnSn-1Sn-2之间有何关系?
(3)利用(2)猜想[
1+
5
2
]8+[
1-
5
2
]8

查看答案和解析>>

科目:初中数学 来源: 题型:

有一个定理:若x1、x2是一元二次方程ax2+bx+c=0(a≠0,a、b、c为系数且为常数)的两个实数根,则x1+x2=-
b
a
、x1•x2=
c
a
,这个定理叫做韦达定理. 如:x1、x2是方程x2+2x-1=0的两个实数根,则x1+x2=-2、x1•x2=-1. 若x1,x2是方程2x2+(m-1)x-
1
2
m=0
的两个实根.试求:
(1)x1+x2与x1•x2的值(用含有m的代数式表示);
(2)
x
2
1
+
x
2
2
的值(用含有m的代数式表示);
(3)若(x1-x2)2=1,试求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

韦达定理:若x1,x2为方程ax2+bx+c=0的两根,则数学公式数学公式,已知:m和n是方程2x2-5x-3=0的两根,利用以上材料,不解方程,求:
(1)数学公式
(2)m2+n2的值.

查看答案和解析>>

同步练习册答案