精英家教网 > 初中数学 > 题目详情
20.如图,长方形ABCD中,P是AD上一动点,连接BP,过点A作BP的垂线,垂足为F,交BD于点E,交CD于点G.
(1)当AB=AD,且P是AD的中点时,求证:AG=BP;
(2)在(1)的条件下,求$\frac{DE}{BE}$的值;
(3)类比探究:若AB=3AD,AD=2AP,$\frac{DE}{BE}$的值为$\frac{1}{18}$.(直接填答案)

分析 (1)根据BP⊥AG,AB=AD,四边形ABCD是矩形,运用AAS判定△ABP≌△DAG,即可得出AG=BP;
(2)根据△ABP≌△DAG,得出AP=DG,再根据AP=$\frac{1}{2}$AD,即可得到DG=$\frac{1}{2}$AD=$\frac{1}{2}$AB,再根据AB∥CD,判定△DGE∽△BAE,最后根据相似三角形的性质,得出$\frac{DE}{BE}$=$\frac{DG}{BA}$=$\frac{1}{2}$;
(3)设AP=a,则AD=2AP=2a,AB=3AD=6a,根据△ABP∽△DAG,即可求得$\frac{AP}{GD}$=$\frac{AB}{DA}$,得出DG=$\frac{1}{3}$a,再根据△DGE∽△BAE,运用相似三角形的性质,得出$\frac{DE}{BE}$=$\frac{DG}{BA}$=$\frac{\frac{1}{3}a}{6a}$=$\frac{1}{18}$即可.

解答 解:(1)如图,∵BP⊥AG,∠BAD=90°,
∴∠ABF+∠BAF=90°,∠BAF+∠DAG=90°,
∴∠ABF=∠DAG,
在△ABP和△DAG中,
$\left\{\begin{array}{l}{∠BAP=∠ADG=90°}\\{∠ABF=∠DAG}\\{AB=DA}\end{array}\right.$,
∴△ABP≌△DAG(AAS),
∴AG=BP;

(2)∵△ABP≌△DAG,
∴AP=DG,
∵AP=$\frac{1}{2}$AD,
∴DG=$\frac{1}{2}$AD=$\frac{1}{2}$AB,
∵AB∥CD,
∴△DGE∽△BAE,
∴$\frac{DE}{BE}$=$\frac{DG}{BA}$=$\frac{1}{2}$;

(3)设AP=a,则AD=2AP=2a,AB=3AD=6a,
∵BP⊥AG,∠BAD=90°,
∴∠ABF+∠BAF=90°,∠BAF+∠DAG=90°,
∴∠ABF=∠DAG,
又∵∠BAP=∠ADG,
∴△ABP∽△DAG,
∴$\frac{AP}{GD}$=$\frac{AB}{DA}$,即$\frac{a}{DG}$=$\frac{6a}{2a}$=3,
∴DG=$\frac{1}{3}$a,
∵AB∥GD,
∴△DGE∽△BAE,
∴$\frac{DE}{BE}$=$\frac{DG}{BA}$=$\frac{\frac{1}{3}a}{6a}$=$\frac{1}{18}$.
故答案为:$\frac{1}{18}$.

点评 本题属于相似形综合题,主要考查了相似三角形的判定与性质,全等三角形的殴打与性质的综合应用,解决问题的关键是根据相似三角形的对应边相等,以及相似三角形的对应边成比例进行推导计算.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.已知:实数m,n满足:m+n=4,mn=-2.
(1)求(1-m)(1-n);
(2)求m2+n2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知点P(-2,3)在反比例函数y=$\frac{k}{x}$(k为常数,且k≠0)的图象上.
(1)求这个函数的解析式;
(2)判断该反比例函数图象是否经过点A(-1,-3),并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.某班召开主题班会,准备从由2名男生和2名女生组成的班委会中选择2人担任主持人.
(1)用树状图或表格列出所有等可能结果;
(2)求所选主持人恰好为1名男生和1名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知:x=2+$\sqrt{3}$,y=2-$\sqrt{3}$,求x2+y2-xy的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.
(1)画出△ABC关于x轴对称的图形△A1B1C1
(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.小明骑自行车从A地出发2小时后,小红步行同路赶来,3小时后两人相距16千米,此时小红继续追赶,小明在原地休息$\frac{8}{3}$小时后从原路返回,又经过1小时两人第一次相遇于B地,问A地与B地相距多远?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.一批货物要运往某地,货主准备租用汽车运输公司的甲,乙两种货车.已知过去两次租用这两种货车的情况如表;
第一次第二次
甲种车辆数单位(辆)25
乙种车辆数单位(辆)36
累计运货数单位(吨)15.535
现在该公司2辆甲种货车及5辆乙种货车一次刚好运货,如果按每吨付运费30元计算,货主应付多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.9的平方根是(  )
A.81B.3C.±3D.±$\sqrt{3}$

查看答案和解析>>

同步练习册答案