【题目】已知:如图,正方形的边长为,,分别平分正方形的两个外角,且满足,连接,,.
求证:;
求的度数.
【答案】(1)详见解析;(2)135°.
【解析】
(1)如图(3)由条件可以得出∠BMA=∠3,∠ABM=∠ADN=135°,就可以得出△ABM∽△NDA,利用相似三角形的性质就可以得出BMDN=36;
(2)由△ABM∽△NDA,可以得出BM:DA=AB:ND,再由正方形的性质通过等量代换就可以得出△BCM∽△DNC.利用角的关系和圆周角的度数就可以求出结论;
(3)将△AND绕点A顺时针旋转90°得到△ABF,连接MF,证明△ABF≌△ADN.利用边角的关系得出△BMF是直角三角形,由勾股定理就可以得出结论.
证明:
∵,分别平分正方形的两个外角,
∴,
∵四边形是正方形,
∴,,
∴,
∵,
,∵,
∴,
∴,
∴,
∴.
∵,
∴,∵,
∴,
∴,
∵,
∴,
∴.
科目:初中数学 来源: 题型:
【题目】阅读下列材料,并完成任务。
筝形的定义:两组邻边分别相等的四边形叫做筝形,几何图形的定义通常可作为图形的性质也可以作为图形的判定方法.也就是说,如图,若四边形ABCD是一个筝形,则AB=AD,BC=CD;若AB=AD,BC=CD,则四边形ABCD是筝形.
如图,四边形ABCD是一个筝形,其中AB=AD,BC=CD.对角线AC,BD相交于点O,过点0作0M⊥AB,ON⊥AD,垂足分别为M,N.求证:四边形AMON是筝形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形ABCD中,AB=6,AC=3,将△ADC沿AC折叠,点D落在点D′处,CD′与AB交于点F.点P为线段AC(不含点A、C)上任意一点,PM⊥AB于点M,PN⊥CD′于点N,PM+PN=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,平分交于点,在上截取,过点作交于点.求证:四边形是菱形;
如图,中,平分的外角交的延长线于点,在的延长线上截取,过点作交的延长线于点.四边形还是菱形吗?如果是,请证明;如果不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC和△DEF中,满足AB=DE,∠B=∠E,如果要判定这两个三角形全等,那么添加的条件不正确的是( )
A. ∠A=∠D B. ∠C=∠F C. BC=EF D. AC=DF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①, 已知△ABC中, ∠BAC=90°, AB=AC, AE是过A的一条直线, 且B、C在AE的异侧, BD⊥AE于D, CE⊥AE于E.
(1)求证: BD=DE+CE.
(2)若直线AE绕A点旋转到图②位置时(BD<CE), 其余条件不变, 问BD与DE、CE的数量关系如何? 请给予证明;
(3)若直线AE绕A点旋转到图③位置时(BD>CE), 其余条件不变, 问BD与DE、CE的数量关系如何? 请直接写出结果, 不需证明.
(4)根据以上的讨论,请用简洁的语言表达BD与DE,CE的数量关系。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com