精英家教网 > 初中数学 > 题目详情
9.函数y=$\frac{x}{3-x}$的自变量取值范围是(  )
A.x≠3B.x≠0C.x≠3且x≠0D.x<3

分析 根据分母不等于0即可列不等式求解.

解答 解:根据题意得3-x≠0,
解得:x≠3.
故选A.

点评 本题考查了考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数是非负数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.问题再现:
如图1:△ABC中,AF为BC边上的中线,则S△ABF=S△ACP=$\frac{1}{2}$S△ABC
由这个结论解答下列问题:
问题解决:
问题1:如图2,△ABC中,CD为AB边上的中线,BE为AC边上的中线,则S△BOC=S四边形ADOE
 分析:△ABC中,CD为AB边上的中线,则S△BCD=$\frac{1}{2}$S△ABC,BE为AC边上的中线,则S△ABE=$\frac{1}{2}$S△ABC
∴S△BCD=S△ABE
∴S△BCD-S△BOD=S△ABE-S△BOD
又∵S△BOC=S△BCD-S△BOD,S四边形ADOE=S△ABE-S△BOD
即S△BOC=S四边形ADOE
问题2:如图3,△ABC中,CD为AB边上的中线,BE为AC边上的中线,AF为BC边上的中线.
(1)S△BOD=S△COE吗?请说明理由.
(2)请直接写出△BOD的面积与△ABC的面积之间的数量关系:S△BOD=$\frac{1}{6}$S△ABC
问题拓广:
(1)如图4,E、F分别为四边形ABCD的边AD、BC的中点,请直接写出阴影部分的面积与四边形ABCD的面积之间的数量关系:S=$\frac{1}{2}$S四边形ABCD
(2)如图5,E、F、G、H分别为四边形ABCD的边AD、BC、AB、CD的中点,请直接写出阴影部分的面积与四边形ABCD的面积之间的数量关系:S=$\frac{1}{3}$S四边形ABCD
(3)如图6,E、F、G、H分别为四边形ABCD的边AD、BC、AB、CD的中点,
若S△AME=1、S△BNG=1.5、S△CQF=2、S△BFH△DFH=2.5,则S=7.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.完成证明,说明理由.已知:如图,BC∥DE,点E在AB边上,DE、AC交于点F,∠1=∠2,∠3=∠4,求证AE∥CD.
证明:∵BC∥DE(已知),
∴∠4=∠FCB(两直线平行,同位角相等).
∵∠3=∠4(已知),
∴∠3=∠FCB(等量代换).
∵∠1=∠2(已知),
∴∠1+∠FCE=∠2+∠FCE(等式的性质).
即∠FCB=∠ECB,
∴∠3=∠ECD(等量代换).
∴AE∥CD(内错角相等,两直线平行).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.已知一个等腰三角形的两边长分别为$\sqrt{18}$和$\sqrt{50}$,则这个等腰三角形的周长为(  )
A.11$\sqrt{2}$B.13$\sqrt{2}$C.11$\sqrt{3}$或$\sqrt{3}$D.11$\sqrt{2}$或13$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,每个图形都由同样大小的“”按照一定的规律组成,其中第1个图形有1个“”,第2个图形有2个“”,第3个图形有5个“”,…,则第6个图形中“”的个数为(  )
A.23B.24C.25D.26

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,下列选项中,不能判断a∥b的是(  )
A.∠1=∠3B.∠2=∠4C.∠2=∠3D.∠2+∠3=180°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)如图2,固定△ABC,将△DEC绕点C旋转,当点D恰好落在AB边上时,
①判断DE和AC的位置关系,并说明理由;
②设△BDC的面积为S1,△AEC的面积为S2,那么S1与S2的数量关系是S1=S2

(2)当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.
(3)如图4,∠ABC=60°,点D在其角平分线上,BD=CD=6,DE∥AB交BC于点E,若点F在射线BA上,并且S△DCF=S△BDE,请直接写出相应的BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.已知点P(m,n)在第四象限,那么点Q(n-1,-m)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,AB为⊙O的直径,PD切⊙O于点C,交BA的延长线于点D,且CD=CO,则∠PCB等于(  )
A.67.5°B.60°C.45°D.30°

查看答案和解析>>

同步练习册答案