精英家教网 > 初中数学 > 题目详情
如图,CE、CB是半圆O的切线,切点分别为D、B,AB为半圆O的直径.CE与BA的延长线交于点E,连接OC、OD.
(1)求证:△OBC≌△ODC;
(2)若已知DE=a,AE=b,BC=c,请你思考后,从a,b,c三个已知数中精英家教网选用适当的数,设计出计算半圆O的半径r的一种方案:
①方案中你选用的已知数是
 

②写出求解过程(结果用字母表示).
分析:解:(1)CD、CB是半圆O的切线根据切线的性质知,∠0DC=∠0BC=90°,又由于半径OP=半径OB,公共边OC=OC,由HL判定△OBC≌△ODC;
(2)在Rt△ODE中,由勾股定理,得OD2+DE2=OE2即a2+r2=(b+r)2,a2=b2+2br.解得r=
a2-b2
2b
,故可选用已知数为a、b.
解答:(1)证明:CD、CB是半圆O的切线,
∴∠0DC=∠0BC=90°.
又∴0D=0B,OC=OC,
∴△OBC≌△ODC(HL).

(2)解:(此题答案不唯一)
①方案中选用的已知数是a、b;
②在Rt△ODE中,由勾股定理,得a2+r2=(b+r)2
∴a2=b2+2br.r=
a2-b2
2b

①选用a、b、c,在Rt△BCE中用勾股定理得:r=
a2+2ac
-b
2

②选用a、b、c,由Rt△0DE∽Rt△cBE得,r=
-b+
b2+8ac
4

③选用a、b、c,由连接AD,可证AD∥OC,得r=bc/a;
④若选a、c,可得r=
c
a2+2ac
a+2c
点评:本题利用了切线的性质,全等三角形的判定和性质,勾股定理求解,注意第(2)小题的答案不唯一.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,是一块含30°(即∠CAB=30°)角的三角板和一个量角器拼在一起,三角板斜边AB与量角器所在圆的直径MN恰好重合,其量角器最外缘的读数是从N点开始(即N点的读数精英家教网为O),现有射线CP绕点C从CA的位置开始按顺时针方向以每秒2度的速度旋转到CB位置,在旋转过程中,射线CP与量角器的半圆弧交于E.
(1)当旋转7.5秒时,连接BE,试说明:BE=CE;
(2)填空:①当射线CP经过△ABC的外心时,点E处的读数是
 

②当射线CP经过△ABC的内心时,点E处的读数是
 

③设旋转x秒后,E点出的读数为y度,则y与x的函数式是y=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直角坐标系中,四边形OABC为正方形,E点在x轴的正半轴上运动,点F在CB精英家教网边上,且∠OAE=∠FAE
在图①中,E点在OC边上,CE=
1
2
OC
,若延长AE、BC相交于点H,由∠OAE=∠FAE和AO∥BC,易知∠FAE=∠H,得AF=HF;由于E为OC中点,AO∥BC,可得△AOE≌△HCE,有AO=CH,又因AO=OC,可得CH=OC,所以有AF=CF+OC
(1)若E点在OC边上,CE=
1
3
OC
,(如图②)请探索AF、FC、OC三条线段之间的数量关系,并证明你的结论;
(2)若E点在OC边上,CE=
1
n
OC
(n是大于1的整数),请直接写出AF、FC、OC之间的数量关系(不要求证明);
(3)若A点的坐标为(0,6),E点在x轴的正半轴上运动,点F在直线CB上,且∠OAE=∠FAE;当AF和CF相差2个单位长度时,试求出此时E点的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•武汉模拟)如图,AB为⊙O的直径,AM和BN是它的两条切线,E为⊙O的半圆弧上一动点(不与A、B重合),过点E的直线分别交射线AM、BN于D、C两点,且CB=CE.
(1)求证:CD为⊙O的切线;
(2)若tan∠BAC=
2
2
,求 
AH
CH
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

我们新定义一种三角形:两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.
(1)根据“奇异三角形”的定义,请你判断命题“等边三角形一定是奇异三角形”是真命题还是假命题,并说明理由;
(2)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;
(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆弧ADB的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.试说明△ACE是奇异三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图是一块含30°(即∠CAB=30°)角的三角板和一个量角器拼在一起,三角板斜边AB与量角器所在圆的直径MN重合,其量角器最外缘的读数是从N点开始(即N点的读数为0),现有射线CP绕点C从CA方向顺时针以每秒2度的速度旋转到CB方向,在旋转过程中,射线CP与量角器的半圆弧交于E.
(1)当射线CP分别经过△ABC的外心、内心时,点E处的读数分别是多少?
(2)设旋转x秒后,E点处的读数为y度,求y与x的函数式.
(3)当旋转7.5秒时,连接BE,求证:BE=CE.

查看答案和解析>>

同步练习册答案