精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,直线AB分别与x轴,y轴相交于A,B两点,OA,OB的长分别是方程x2﹣14x+48=0的两根,且OA<OB.

(1)求点A,B的坐标.
(2)过点A作直线AC交y轴于点C,∠1是直线AC与x轴相交所成的锐角,sin∠1=,点D在线段CA的延长线上,且AD=AB,若反比例函数的图象经过点D,求k的值.
(3)在(2)的条件下,点M在射线AD上,平面内是否存在点N,使以A,B,M,N为顶点的四边形是邻边之比为1:2的矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
(1)A(6,0),B(0,8)。
(2)k=84。
(3)存在。点N的坐标为(4,11)或(16,20)。

试题分析:(1)解一元二次方程,求得OA、OB的长度,得到点A、B的坐标。
解:解方程x2﹣14x+48=0,得:x1=6,x2=8。
∵OA,OB的长分别是方程x2﹣14x+48=0的两根,且OA<OB,∴OA=6,OB=8。
∴A(6,0),B(0,8)。
(2)如答图所示,作辅助线,构造全等三角形△AOB≌△DEA,求得点D的坐标;进而由题意,求出k的值。
如答图所示,过点D作DE⊥x轴于点E.

在Rt△AOB中,OA=6,OB=8,
由勾股定理得:AB=10。

∵sin∠1=,∴∠OBA=∠1。
∵∠OBA+∠OAB=90°,∠1+∠ADE=90°,
∴∠OAB=∠ADE。
在△AOB与△DEA中,∵∠OBA=∠1,AB=AD,∠OAB=∠ADE,
∴△AOB≌△DEA(ASA)。∴AE=OB=8,DE=OA=6。∴OE=OA+AE=6+8=14。
∴D(14,6)。
∵反比例函数的图象经过点D,∴k=14×6=84。
(3)如答图所示,可能存在两种情形:
如图所示,若以A,B,M,N为顶点的四边形是邻边之比为1:2的矩形,

①当AB:AM1=2:1时,
过点M1作M1E⊥x轴于点E,
易证Rt△AEM1∽Rt△BOA,
,即
∴AE=4,M1E=3。
过点N1作N1F⊥y轴于点F,易证Rt△N1FB≌Rt△AEM1
∴N1F=AE=4,BF=M1E=3,∴OF=OB+BF=8+3=11。
∴N1(4,11)。
②当AB:AM2=1:2时,同理可求得:N2(16,20)。
综上所述,存在满足条件的点N,点N的坐标为(4,11)或(16,20)。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,一次函数的图象与x轴、y轴分别相交于点A、B.P是射线BO上的一个动点(点P不与点B重合),过点P作PC⊥AB,垂足为C,在射线CA上截取CD=CP,连接PD.设BP=t.

(1)t为何值时,点D恰好与点A重合?
(2)设△PCD与△AOB重叠部分的面积为S,求S与t的函数关系式,并直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

2012年秋季,某省部分地区遭受严重的雨雪自然灾害,兴化农场34800亩的农作物面临着收割困难的局面.兴华农场积极想办法,决定采取机械收割和人工收割两种方式同时进行抢收,工作了4天,由于雨雪过大,机械收割被迫停止,此时,人工收割的工作效率也减少到原来的,第8天时,雨雪停止附近的胜利农场前来支援,合作6天,完成了兴化农场所有的收割任务.图1是机械收割的亩数y1(亩)和人工收割的亩数y2(亩)与时间x(天)之间的函数图象.图2是剩余的农作物的亩数w(亩)与时间x天之间的函数图象,请结合图象回答下列问题.

(1)请直接写出:A点的纵坐标   
(2)求直线BC的解析式.
(3)第几天时,机械收割的总量是人工收割总量的10倍?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如下图,在平面直角坐标系中,一次函数的图像与反比例函数的图像交于二、四象限的A、B两点,与x轴交于C点。已知A(-2,m),B(n,-2),,则此一次函数的解析式为     .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

直线y=﹣2x+m与直线y=2x﹣1的交点在第四象限,则m的取值范围是
A.m>﹣1B.m<1C.﹣1<m<1D.﹣1≤m≤1

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我市某商场有甲、乙两种商品,甲种每件进价15元,售价20元;乙种每件进价35元,售价45元.
(1)若商家同时购进甲、乙两种商品100件,设甲商品购进x件,售完此两种商品总利润为y 元.写出y与x的函数关系式.
(2)该商家计划最多投入3000元用于购进此两种商品共100件,则至少要购进多少件甲种商品?若售完这些商品,商家可获得的最大利润是多少元?
(3)“五•一”期间,商家对甲、乙两种商品进行表中的优惠活动,小王到该商场一次性付款324元购买此类商品,商家可获得的最小利润和最大利润各是多少?
打折前一次性购物总金额
优惠措施
不超过400元
售价打九折
超过400元
售价打八折

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点在直线上一点,则点B与其对应点B′间的距离为
A.B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一次函数y=﹣x+1与x轴,y轴所围成的三角形的面积是  

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种80千克的钱,现在可买88千克。
(1)现在实际这种每千克多少元?
(2)准备这种,若这种的量y(千克)与单价x(元/千克)满足如图所示的一次函数关系。

①求y与x之间的函数关系式;
②请你帮拿个主意,将这种的单价定为多少时,能获得最大利润?最大利润是多少?(利润=收入-进货金额)

查看答案和解析>>

同步练习册答案