精英家教网 > 初中数学 > 题目详情
2.木星的赤道半径约为71400000m,用科学记数法表示为7.14×107m.

分析 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.

解答 解:将71400000用科学记数法表示为:7.14×107
故答案为:7.14×107

点评 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图1,点C将线段AB分成两部分,如果$\frac{AC}{AB}$=$\frac{BC}{AC}$,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为s的图形分成两部分,这两部分的面积分别为S1,S2,如果$\frac{{s}_{1}}{s}$=$\frac{{s}_{2}}{{s}_{1}}$,那么称直线l为该图形的黄金分割线.

(1)研究小组猜想:在三角形ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是三角形ABC 的黄金分割线.你认为对吗?为什么?
(2)请你说明:三角形的中线是否也是该三角形ABC的黄金分割线?
(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D(D为AB边上的黄金分割点)作直线DF,且DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是三角形ABC的黄金分割线.
请你说明理由.
(4)如图4,点E是平行四边形ABCD的边AB的黄金分割点,过点E作EF平行AD,交DC于点F,显然直线EF是平行四边形ABCD的黄金分割线.请你画一条平行四边形ABCD的黄金分割线,使它不经过平行四边形ABCD各边黄金分割点.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,连接OH.
(1)求AD与DH的长;
(2)求证:∠HDO=∠DCO.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.方程2xn-3-y3m+n-2+3=0是二元一次方程,则3m-n=-5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,已知抛物线y=-$\frac{4}{3}$x2+bx+c经过A(0,4),B(3,0)两点,与x轴负半轴交于点C,连接AC、AB.
(1)求该抛物线的解析式;
(2)D、E分别为AC、AB的中点,连接DE,P为DE上的动点,PQ⊥BC,垂足为Q,QN⊥AB,垂足为N,连接PN.
①当△PQN与△ABC相似时,求点P的坐标;
②是否存在点P,使得PQ=NQ,若存在,直接写出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,AB∥CD,图中α、β、γ三个角之间的数量关系为(  )
A.α+β+γ=360°B.α+β-γ=180°C.α+β+γ=180°D.α-β-γ=90°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.若(x+3)(x+n)=x2+mx-15,则m的值为(  )
A.-5B.-2C.5D.2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.对于任意实数x,下列各式中一定成立的是(  )
A.$\sqrt{{x}^{2}-1}$=$\sqrt{x-1}$•$\sqrt{x+1}$B.$\sqrt{{(x+1)}^{2}}$=x+1C.$\sqrt{(-4)•(-x)}$=$\sqrt{-4}$•$\sqrt{-x}$D.$\sqrt{3{6x}^{4}}$=6x2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.解方程:$\frac{2}{x+1}$=$\frac{3}{1-3x}$.

查看答案和解析>>

同步练习册答案