精英家教网 > 初中数学 > 题目详情
(2007•淄川区二模)课间休息时,同学们到饮水机旁依次每人接水0.25升,他们先打开了一个饮水管,后来又打开了第二个饮水管.假设接水的过程中每根饮水管出水的速度是匀速的,在不关闭饮水管的情况下,饮水机水桶内的存水量y(升)与接水时间x(分)的函数关系图象如图所示.请结合图象回答下列问题:
(1)存水量y(升)与接水时间x(分)的函数关系式;
(2)如果接水的同学有28名,那么他们都接完水需要几分钟?
(3)如果有若干名同学按上述方法接水,他们接水所用时间要比只开第一个饮水管接水的时间少用2分钟,那么有多少名学生接完水?

【答案】分析:(1)此函数为分段函数,由图象可利用待定系数法,将每条线段的函数解析式求出;
(2)将28名学生接完水后,饮水机内所剩的存水量求出,根据存数量的值,代入第二个函数解析式进行求解;
(3)设出接完水时的学生人数和所需的时间,根据:按上述方法接水,他们接水所用时间要比只开第一个饮水管接水的时间少用2分钟,列出方程进行求解即可.
解答:解:(1)设
将(0,10),(2,9);(2,9),(5,4.5)分别代入
得:

(2)接水总量为0.25×28=7,
饮水机内余水量为10-7=3(升)
当y=3时,
有3=-x+12,
解得:x=6,
所以28名学生都接完水需要6分钟;

(3)设有a名学生接完水,接水时间为x分钟,

解之得a=10,x=3,
∴有10名学生接完水.
点评:本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.注意自变量的取值范围不能遗漏.
练习册系列答案
相关习题

同步练习册答案