【题目】如图,四边形是菱形,在同一条直线上,.
(1)求证:;
(2)当时,求的度数.
【答案】(1)证明见详解;(2)45°.
【解析】
(1)由四边形是菱形,得AB∥CD,AB=CD,从而得∠ABF=∠CDE,由,得BF=DE,即可证明结论;
(2)由,四边形是菱形,得∠ABF=75°,由ABFCDE,得∠F=∠E=30°,即可求解.
(1)∵四边形是菱形,
∴AB∥CD,AB=CD,
∴∠ABF=∠CDE,
∵,
∴BF=DE,
在ABF和CDE中,
∵,
∴ABFCDE(SAS),
(2)∵,四边形是菱形,
∴∠ABC=150°,∠ABF=∠ABC=×150°=75°,
∵,ABFCDE,
∴∠F=∠E=30°,
∴∠BAF=180°-30°-75°=75°,
∴∠DAF=∠BAF-∠BAD=75°-30°=45°.
科目:初中数学 来源: 题型:
【题目】如图,矩形 ABCD 的对角线 AC 与 BD 相交于点 O,CE∥BD, DE∥AC , AD=2, DE=2,则四边形 OCED 的面积为( )
A. 2 B. 4 C. 4 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,抛物线与x轴的另一交点为B.
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以△ABC的BC边上一点O为圆心的圆,经过A、B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.
(1)求证:AC是⊙O的切线:
(2)若BF=8,DF=,求⊙O的半径;
(3)若∠ADB=60°,BD=1,求阴影部分的面积.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个三位自然数(百位上的数字为,十位上的数字为,个位上的数字为). 若满足,则称这个三位数为“和悦数”,并规定. 如231,因为它的百位上的数字2与个位上的数字1之和等于十位上的数字3. 所以231是“和悦数”,所以.
(1)请任意写出两个“和悦数”,并猜想任意一个“和悦数”是否是11的倍数,请说明理由;
(2)已知有两个十位上的数字相同的“和悦数”,若,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形ABCD的顶点B,C在x轴上,反比例函数y=﹣ (x<0)的图象经过A,E两点,反比例函数y=(x>0)的图象经过第一象限内的D,H两点,正方形EFCH的顶点F.G在AD上.已知A(﹣1,a),B(﹣4,0).
(1)求点C的坐标及k的值;
(2)直接写出正方形EFGH的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数为常数,)的图象经过两点.
(1)求该反比例函数的解析式和的值;
(2)当时,求的取值范围;
(3)若为直线上的一个动点,当最小时,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y1=﹣x+3与x轴交于点B,与y轴交于点C,抛物y2=ax2+bx+c经过点B,C并与x轴交于点A(﹣1,0).
(1)求抛物线解析式,并求出抛物线的顶点D坐标 ;
(2)当y2<0时、请直接写出x的取值范围 ;
(3)当y1<y2时、请直接写出x的取值范围 ;
(4)将抛物线y2向下平移,使得顶点D落到直线BC上,求平移后的抛物线解析式 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,正方形ABCD的边长为4,点E, F分别在BC, BD上,且BE=1,过三点C, E, F作⊙O交CD于点G.
(1)证明∠EFG =90°.
(2)如图2,连结AF,当点F运动至点A,F, G三点共线时,求的面积.
(3)在点F整个运动过程中,
①当EF, FG, CG中满足某两条线段相等,求所有满足条件的BF的长.
②连接EG,若时,求⊙O的半径(请直接写出答案) .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com