已知点和点在抛物线上.
(1)求的值及点的坐标;
(2)点在轴上,且满足△是以为直角边的直角三角形,求点的坐标;
(3)平移抛物线,记平移后点A的对应点为,点B的对应点为. 点M(2,0)在x轴上,当抛物线向右平移到某个位置时,最短,求此时抛物线的函数解析式.
(1), B(-4,-8);(2)(0,0)或(0,-12);(3)右平移个单位时,抛物线的解析式为.
解析试题分析:(1)把点A(2,-2)代入求出a=的值;把点B(-4,n)代入求得n=-8;
(2)先求出直线AB的解析式,然后进行分类讨论求出点P的坐标;
(3)利用对称性求解即可.
试题解析:(1)a=
抛物线解析式为:
B(-4,-8);
(2) 记直线AB与x、y轴分别交于C、D两点,
则直线AB:y=x-4
C(4,0)、D(0,-4)
在Rt△COD中,∵OC=DO
∴∠ODA=45°
以A为直角顶点,则
在中,
则
∴
又∵D(0,-4)
∴(0,0)
以B为直角顶点,则
在中,
∴
∴(0,-12)
∴P(0,0)或(0,-12)
(3)记点A关于x轴的对称点为E(2,2)
则BE:
令y=0,得
即BE与x轴的交点为Q(,0)
故抛物线向右平移个单位时最短
此时,抛物线的解析式为
考点:二次函数综合题.
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系中,已知抛物线交轴于A(2,0),B(6,0)两点,交轴于点C(0,).
(1)求此抛物线的解析式;
(2)若此抛物线的对称轴与直线交于点D,作⊙D与x轴相切,⊙D交轴于点E、F两点,求劣弧EF所对圆心角的度数;
(3)P为此抛物线在第二象限图像上的一点,PG垂直于轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1︰2两部分.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
在平面直角坐标系xOy中,二次函数y=-x2+(m-1)x+4m的图象与x轴负半轴交于点A,与y轴交于点B(0,4),已知点E(0,1).
(1)求m的值及点A的坐标;
(2)如图,将△AEO沿x轴向右平移得到△A′E′O′,连结A′B、BE′.
①当点E′落在该二次函数的图象上时,求AA′的长;
②设AA′=n,其中0<n<2,试用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;
③当A′B+BE′取得最小值时,求点E′的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知:如图,直线与x轴相交于点A,与直线相交于点P.动点E从原点O出发,以每秒1个单位长度的速度沿着OPA的路线向点A匀速运动(E不与点O,A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,矩形EBOF与△OPA重叠部分面积为S.
(1)求点P的坐标;
(2)请判断△OPA的形状并说明理由;
(3)请探究S与t之间的函数关系式,并指出t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知抛物线与轴相交于,两点(点在点的左侧),与轴相交于点.
(1)点的坐标为 ,点的坐标为 ;
(2)在轴的正半轴上是否存在点,使以点,,为顶点的三角形与相似?若存在,求出点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
二次函数y=x2+bx+c的图象经过点(4,3),(3,0).
(1)b= ,c= ;
(2)选取适当的数据填写下表,并在右图的直角坐标系中画出该函数的图像;
x | … | | | | | | … |
y | … | | | | | | … |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系xOy中,将抛物线C1:y=x2+3先向右平移1个单位,再向下平移7个单位得到抛物线C2。C2的图象与x轴交于A、B两点(点A在点B的左侧)。
(1)求抛物线C2的解析式;
(2)若抛物线C2的对称轴与x轴交于点C,与抛物线C2交于点D,与抛物线C1交于点E,连结AD、DB、BE、EA,请证明四边形ADBE是菱形,并计算它的面积;
(3)若点F为对称轴DE上任意一点,在抛物线C2上是否存在这样的点G,使以O、B、F、G四点为顶点的四边形是平行四边形,如果存在,请求出点G的坐标,如果不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)、D(2, n)三点.
(1)求抛物线的解析式及点D坐标;
(2)点M是抛物线对称轴上一动点,求使BM-AM的值最大时的点M的坐标;
(3)如图2,将射线BA沿BO翻折,交y轴于点C,交抛物线于点N,求点N的坐标;
(4)在(3)的条件下,连结ON,OD,如图2,请求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com