【题目】如图,抛物线y=ax2+3x交x轴正半轴于点A(6,0),顶点为M,对称轴MB交x轴于点B,过点C(2,0)作射线CD交MB于点D(D在x轴上方),OE∥CD交MB于点E,EF∥x轴交CD于点F,作直线MF.
(1)求a的值及M的坐标;
(2)当BD为何值时,点F恰好落在该抛物线上?
(3)当∠DCB=45°时:
①求直线MF的解析式;
②延长OE交FM于点G,四边形DEGF和四边形OEDC的面积分别记为S1、S2 , 则S1:S2的值为(直接写答案)
【答案】
(1)解:把A(6,0)代入y=ax2+3x得36a+18=0,解得a=﹣ ;
抛物线解析式为y=﹣ x2+3x,
∵y=﹣ (x﹣3)2+ ,
∴M点的坐标为(3, )
(2)解:∵CF∥OE,EF∥OC,
∴四边形OCFE为平行四边形,
∴EF=OC=2,
∵抛物线的对称轴为直线x=3,B(3,0),
∴F点的横坐标为5,
当x=5时,y=﹣ x2+3x= ,即F(5, ),
∴BE= ,
∵EF∥BC,
∴△BCD∽△EFD,
∴ = = ,
∴BD= BE= × = ,
即当BD为 时,点F恰好落在该抛物线上
(3)∵CD∥OE,∴∠BOE=∠DCB=45°∴△BOE为等腰直角三角形, ∴BE=OE=3,则E(3,3),∴直线OE的解析式为y=x,同理可得△BCD为等腰直角三角形,∴BD=BC=1,∴DE=2,∵EF∥OC,EF=OC=2,∴F(5,3),设直线MF的解析式为y=kx+b,把M(3, ),F(5,3)代入得 ,解得 ,∴直线MF的解析式为y=﹣ x+ ;,
【解析】解:(3)②解方程组 得 ,则G( , ),
∴S1=S△GEF+S△DEF= ×2×( ﹣3)+ ×2×2= ,
S2=S△BOE﹣S△BCD= ×3×3﹣ ×1×1=4,
∴ = = .
所以答案是 .
【考点精析】本题主要考查了确定一次函数的表达式和二次函数的最值的相关知识点,需要掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法;如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,tan∠ABC= ,P为AB上一点,以PB为边向外作菱形PMNB,连结DM,取DM中点E,连结AE,PE,则 的值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,D为AC中点,P为AB上的动点,将P绕点D逆时针旋转90°得到P′,连CP′,则线段CP′的最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠B=90°,∠ACB=30°,AB=2,CD=3,AD=5.
(1)求证:AC⊥CD;
(2)求四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如下图时用黑色的正六边形和白色的正方形按照一定的规律组合而成的两色图案
(1)当黑色的正六边形的块数为1时,有6块白色的正方形配套;当黑色的正六边形块数为2时,有11块白色的正方形配套;则当黑色的正六边形块数为3,10时,分别写出白色的正方形配套块数;
(2)当白色的正方形块数为201时,求黑色的正六边形的块数.
(3)组成白色的正方形的块数能否为100,如果能,求出黑色的正六边形的块数,如果不能,请说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.
(1)该顾客至多可得到元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD是∠BAC的平分线,AD的垂直平分线分别交AB于点F,交BC的延长线于点E.
求证:(1)∠EAD=∠EDA;
(2)DF∥AC.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com