如图,平面直角坐标系中,⊙O1过原点O,且⊙O1与⊙O2相外切,圆心O1与O2在x轴正半轴上,⊙O1的半径O1P1、⊙O2的半径O2P2都与x轴垂直,且点P1、P2在反比例函数(x>0)的图象上,则 .
科目:初中数学 来源: 题型:
在平面中,下列命题为真命题的是( )
A.四边相等的四边形是正方形 B.四个角相等的四边形是矩形
C.对角线相等的四边形是菱形 D.对角线互相垂直的四边形是平行四边形
查看答案和解析>>
科目:初中数学 来源: 题型:
在平面直角坐标系中,抛物线与轴交于A、B两点(点A在点B的左侧),与轴交于点C,点B的坐标为(3,0),将直线沿轴向上平移3个单位长度后恰好经过B、C两点。
(1)求直线BC及抛物线的解析式;
(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且,求点P的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
某黄金珠宝商店,今年4月份以前,每天的进货量与销售量均为1000克,进入4月份后,每天的进货量保持不变,因国际金价大跌走熊,市场需求量不断增加.如图1是4月前后一段时期库存量(克)与销售时间(月份)之间的函数图象. (4月份以30天计算)
(1)该商店 月份开始出现供不应求的现象,4月份的平均日销售量为 克?
(2)为满足市场需求,商店准备投资20万元同时购进A、B两种新黄金产品。其中购买A、B两种新黄金产品所投资的金额与销售收入存在如图2所示的函数对应关系. 请你判断商店这次投资能否盈利?
(3)在(2)的其他条件不变的情况下,商店准备投资m万元同时购进A、B两种新黄金产品,并实现最大盈利3.2万元,请求出m的值.(利润=销售收入-投资金额)
商品名称 金 额 | A | B | |||
投资金额x(万元) | x | 5 | x | 1 | 5 |
销售收入y(万元) | y1=kx (k≠0) | 3 | y2=ax2+bx (a≠0) | 2.8 | 10 |
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com