精英家教网 > 初中数学 > 题目详情
△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC,
(1)求证:△BDF∽△CEF;
(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;
(3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径.
(1)证明见解析
(2)S与m之间的函数关系为:S═﹣(m﹣2)2+3(其中0<m<4).当m=2时,S取到最大值,最大值为3
(3)此圆直径长为

试题分析:(1)由已知可知∠BDF=∠CEF,∠B=∠C,所以得证.
(2)四边形ADFE面积S可以看成△ADF与△AEF的面积之和,这两个三角形均为直角三角形,在△BDF与△CEF中,由三角函数可以用m表示出BD、DF、CE、EF的长,进而可得AD、AE的长,从而可以用含m的代数式表示S,然后通过配方,转化为二次函数的最值问题,就可以解决问题.
(3)由已知易知AF就是圆的直径,利用圆周角定理将∠EDF转化为∠EAF.在△AFC中,知道tan∠EAF、∠C、AC,通过解直角三角形就可求出AF长.
试题解析:(1):∵DF⊥AB,EF⊥AC,
∴∠BDF=∠CEF=90°.
∵△ABC为等边三角形,
∴∠B=∠C=60°.
∵∠BDF=∠CEF,∠B=∠C,
∴△BDF∽△CEF.
(2)∵∠BDF=90°,∠B=60°,
∴sin60°==,cos60°==
∵BF=m,
∴DF=m,BD=
∵AB=4,
∴AD=4﹣
∴SADF=AD•DF
=×(4﹣)×m
=﹣m2+m.
同理:SAEF=AE•EF
=×(4﹣)×(4﹣m)
=﹣m2+2
∴S=SADF+SAEF
=﹣m2+m+2
=﹣(m2﹣4m﹣8)
=﹣(m﹣2)2+3.其中0<m<4.
∵﹣<0,0<2<4,
∴当m=2时,S取最大值,最大值为3
∴S与m之间的函数关系为:
S═﹣(m﹣2)2+3(其中0<m<4).
当m=2时,S取到最大值,最大值为3
(3)如图2,

∵A、D、F、E四点共圆,
∴∠EDF=∠EAF.
∵∠ADF=∠AEF=90°,
∴AF是此圆的直径.
∵tan∠EDF=
∴tan∠EAF=
=
∵∠C=60°,
=tan60°=
设EC=x,则EF=x,EA=2x.
∵AC=a,
∴2x+x=a.
∴x=
∴EF=,AE=
∵∠AEF=90°,
∴AF==
∴此圆直径长为
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠BCD.
(1)求证:CB//PD;
(2)若BC=3,sin∠BPD=,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,先作∠BAC的角平分线AD交BC于点D,再以AC边上的一点O为圆心,过A、D两点作⊙O(用尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知一个圆柱体侧面展开图为矩形ABCD(如图),若AB=6.28cm,BC=18.84cm,则该圆柱体的体积约为______cm3(取π=3.14,结果精确到0.1).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为(  )
A.B.2πC.3πD.12π

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,∠A=90°,AB=6,AC=8,分别以点B和C为圆心的两个等圆外切,则图中阴影部分面积为   (结果保留π)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB是⊙O的直径,BC是弦,点E是的中点,OE交BC于点D.连接AC,若BC=6,DE=1,则AC的长为   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一扇形的半径为24cm,若此扇形围成的圆锥的底面半径为10cm,那么这个扇形的面积是(  )
A.120πcm2 B.240πcm2C.260πcm2D.480πcm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,有一圆锥形粮堆,从正面看是边长为2m的正三角形ABC,母线AC中点为P,一条小虫在B处,它要圆锥侧面到达P处,则小虫所经过的最短路程是多少?

查看答案和解析>>

同步练习册答案