£¨2012•áéÖÝ£©Èçͼ£¬°ÑÁ½¸öÈ«µÈµÄRt¡÷AOBºÍRt¡÷COD·Ö±ðÖÃÓÚƽÃæÖ±½Ç×ø±êϵÖУ¬Ê¹Ö±½Ç±ßOB¡¢ODÔÚxÖáÉÏ£®ÒÑÖªµãA£¨1£¬2£©£¬¹ýA¡¢CÁ½µãµÄÖ±Ïß·Ö±ð½»xÖá¡¢yÖáÓÚµãE¡¢F£®Å×ÎïÏßy=ax2+bx+c¾­¹ýO¡¢A¡¢CÈýµã£®
£¨1£©Çó¸ÃÅ×ÎïÏߵĺ¯Êý½âÎöʽ£»
£¨2£©µãPΪÏ߶ÎOCÉÏÒ»¸ö¶¯µã£¬¹ýµãP×÷yÖáµÄƽÐÐÏß½»Å×ÎïÏßÓÚµãM£¬½»xÖáÓÚµãN£¬ÎÊÊÇ·ñ´æÔÚÕâÑùµÄµãP£¬Ê¹µÃËıßÐÎABPMΪµÈÑüÌÝÐΣ¿Èô´æÔÚ£¬Çó³ö´ËʱµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©Èô¡÷AOBÑØAC·½ÏòƽÒÆ£¨µãAʼÖÕÔÚÏ߶ÎACÉÏ£¬ÇÒ²»ÓëµãCÖغϣ©£¬¡÷AOBÔÚƽÒƹý³ÌÖÐÓë¡÷CODÖصþ²¿·ÖÃæ»ý¼ÇΪS£®ÊÔ̽¾¿SÊÇ·ñ´æÔÚ×î´óÖµ£¿Èô´æÔÚ£¬Çó³öÕâ¸ö×î´óÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©Å×ÎïÏßy=ax2+bx+c¾­¹ýµãO¡¢A¡¢C£¬ÀûÓôý¶¨ÏµÊý·¨ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©¸ù¾ÝµÈÑüÌÝÐεÄÐÔÖÊ£¬È·¶¨Ïà¹ØµãµÄ×ø±êÒÔ¼°Ï߶γ¤¶ÈµÄÊýÁ¿¹Øϵ£¬µÃµ½Ò»Ôª¶þ´Î·½³Ì£¬Çó³ötµÄÖµ£¬´Ó¶ø¿É½â£®½áÂÛ£º´æÔÚµãP£¨
2
3
£¬
1
3
£©£¬Ê¹µÃËıßÐÎABPMΪµÈÑüÌÝÐΣ»
£¨3£©±¾ÎʹؼüÊÇÇóµÃÖصþ²¿·ÖÃæ»ýSµÄ±í´ïʽ£¬È»ºóÀûÓöþ´Îº¯ÊýµÄ¼«ÖµÇóµÃSµÄ×î´óÖµ£®½â´ðÖÐÌṩÁËÈýÖÖÇó½âÃæ»ýS±í´ïʽµÄ·½·¨£¬Êâ;ͬ¹é£¬¿É×ÐϸÌåζ£®
½â´ð£º½â£º£¨1£©¡ßÅ×ÎïÏßy=ax2+bx+c¾­¹ýµãO¡¢A¡¢C£¬
¿ÉµÃc=0£¬¡à
a+b=2
4a+2b=1
£¬
½âµÃa=-
3
2
£¬b=
7
2
£¬
¡àÅ×ÎïÏß½âÎöʽΪy=-
3
2
x2+
7
2
x£®

£¨2£©ÉèµãPµÄºá×ø±êΪt£¬¡ßPN¡ÎCD£¬¡à¡÷OPN¡×¡÷OCD£¬¿ÉµÃPN=
t
2

¡àP£¨t£¬
t
2
£©£¬¡ßµãMÔÚÅ×ÎïÏßÉÏ£¬¡àM£¨t£¬-
3
2
t2+
7
2
t£©£®
Èç½â´ðͼ1£¬¹ýMµã×÷MG¡ÍABÓÚG£¬¹ýPµã×÷PH¡ÍABÓÚH£¬
AG=yA-yM=2-£¨-
3
2
t2+
7
2
t£©=
3
2
t2-
7
2
t+2£¬BH=PN=
t
2
£®
µ±AG=BHʱ£¬ËıßÐÎABPMΪµÈÑüÌÝÐΣ¬
¡à
3
2
t2-
7
2
t+2=
t
2
£¬
»¯¼òµÃ3t2-8t+4=0£¬½âµÃt1=2£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£¬t2=
2
3
£¬
¡àµãPµÄ×ø±êΪ£¨
2
3
£¬
1
3
£©
¡à´æÔÚµãP£¨
2
3
£¬
1
3
£©£¬Ê¹µÃËıßÐÎABPMΪµÈÑüÌÝÐΣ®

£¨3£©Èç½â´ðͼ2£¬¡÷AOBÑØAC·½ÏòƽÒÆÖÁ¡÷A¡äO¡äB¡ä£¬A¡äB¡ä½»xÖáÓÚT£¬½»OCÓÚQ£¬A¡äO¡ä½»xÖáÓÚK£¬½»OCÓÚR£®
ÇóµÃ¹ýA¡¢CµÄÖ±ÏßΪyAC=-x+3£¬¿ÉÉèµãA¡äµÄºá×ø±êΪa£¬ÔòµãA¡ä£¨a£¬-a+3£©£¬
Ò×Öª¡÷OQT¡×¡÷OCD£¬¿ÉµÃQT=
a
2
£¬
¡àµãQµÄ×ø±êΪ£¨a£¬
a
2
£©£®

½â·¨Ò»£º
ÉèABÓëOCÏཻÓÚµãJ£¬
¡ß¡÷A¡äRQ¡×¡÷AOJ£¬ÏàËÆÈý½ÇÐζÔÓ¦¸ßµÄ±ÈµÈÓÚÏàËƱȣ¬¡à
HT
OB
=
A¡äQ
AJ

¡àHT=
A¡äQ
AJ
•OB
=
3-a-
1
2
a
2-
1
2
¡Á1
=2-a£¬
KT=
1
2
A¡äT=
1
2
£¨3-a£©£¬A¡äQ=yA¡ä-yQ=£¨-a+3£©-
a
2
=3-
3
2
a£®
SËıßÐÎRKTQ=S¡÷A¡äKT-S¡÷A¡äRQ
=
1
2
KT•A¡äT-
1
2
A¡äQ•HT
=
1
2
3-a
2
•£¨3-a£©-
1
2
•£¨3-
3
2
a£©•£¨-a+2£©
=-
1
2
a2+
3
2
a-
3
4
=-
1
2
£¨a-
3
2
£©2+
3
8

ÓÉÓÚ-
1
2
£¼0£¬
¡àÔÚÏ߶ÎACÉÏ´æÔÚµãA¡ä£¨
3
2
£¬
3
2
£©£¬ÄÜʹÖصþ²¿·ÖÃæ»ýSÈ¡µ½×î´óÖµ£¬×î´óֵΪ
3
8
£®

½â·¨¶þ£º
¹ýµãR×÷RH¡ÍxÖáÓÚH£¬ÔòÓÉ¡÷ORH¡×¡÷OCD£¬µÃ
RH
OH
=
CD
OD
=
1
2
  ¢Ù
ÓÉ¡÷RKH¡×¡÷A¡äO¡äB¡ä£¬µÃ
KH
RH
=
O¡äB¡ä
A¡äB¡ä
=
1
2
   ¢Ú
ÓÉ¢Ù£¬¢ÚµÃKH=
1
4
OH£¬
OK=
3
4
OH£¬KT=OT-OK=a-
3
4
OH   ¢Û
ÓÉ¡÷A¡äKT¡×¡÷A¡äO¡äB¡ä£¬µÃ
KT
A¡äT
=
O¡äB¡ä
A¡äB¡ä
=
1
2
£¬
ÔòKT=
3-a
2
    ¢Ü
ÓÉ¢Û£¬¢ÜµÃ
3-a
2
=a-
3
4
OH£¬¼´OH=2a-2£¬RH=a-1£¬ËùÒÔµãRµÄ×ø±êΪR£¨2a-2£¬a-1£©
SËıßÐÎRKTQ=S¡÷QOT-S¡÷ROK=
1
2
•OT•QT-
1
2
•OK•RH
=
1
2
a•
1
2
a-
1
2
£¨1+
3
2
a-
5
2
£©•£¨a-1£©
=-
1
2
a2+
3
2
a-
3
4
=-
1
2
£¨a-
3
2
£©2+
3
8

ÓÉÓÚ-
1
2
£¼0£¬
¡àÔÚÏ߶ÎACÉÏ´æÔÚµãA¡ä£¨
3
2
£¬
3
2
£©£¬ÄÜʹÖصþ²¿·ÖÃæ»ýSÈ¡µ½×î´óÖµ£¬×î´óֵΪ
3
8
£®

½â·¨Èý£º
¡ßAB=2£¬OB=1£¬¡àtan¡ÏO¡äA¡äB¡ä=tan¡ÏOAB=
1
2
£¬
¡àKT=A¡äT•tan¡ÏO¡äA¡äB¡ä=£¨-a+3£©•
1
2
=-
1
2
a+
3
2
£¬
¡àOK=OT-KT=a-£¨-
1
2
a+
3
2
£©=
3
2
a-
3
2
£¬
¹ýµãR×÷RH¡ÍxÖáÓÚH£¬
¡ßcot¡ÏOAB=tan¡ÏRKH=
RH
KH
=2£¬
¡àRH=2KH
ÓÖ¡ßtan¡ÏOAB=tan¡ÏROH=
RH
OH
=
RH
OK+KH
=
1
2
£¬
¡à2RH=OK+KH=
3
2
a-
3
2
+
1
2
RH£¬
¡àRH=a-1£¬OH=2£¨a-1£©£¬
¡àµãR×ø±êR£¨2a-2£¬a-1£©
SËıßÐÎRKTQ=S¡÷A¡äKT-S¡÷A¡äRQ=
1
2
•KT•A¡äT-
1
2
A¡äQ•£¨xQ-xR£©
=
1
2
3-a
2
•£¨3-a£©-
1
2
•£¨3-
3
2
a£©•£¨-a+2£©
=-
1
2
a2+
3
2
a-
3
4
=-
1
2
£¨a-
3
2
£©2+
3
8

ÓÉÓÚ-
1
2
£¼0£¬
¡àÔÚÏ߶ÎACÉÏ´æÔÚµãA¡ä£¨
3
2
£¬
3
2
£©£¬ÄÜʹÖصþ²¿·ÖÃæ»ýSÈ¡µ½×î´óÖµ£¬×î´óֵΪ
3
8
£®
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁ˶þ´Îº¯ÊýµÄͼÏóÓëÐÔÖÊ¡¢´ý¶¨ÏµÊý·¨¡¢¶þ´Îº¯ÊýµÄ×îÖµ¡¢µÈÑüÌÝÐΡ¢ÏàËÆÈý½ÇÐΡ¢Í¼ÐεÄƽÒÆÒÔ¼°¼¸ºÎͼÐÎÃæ»ýµÄÇ󷨣¬Éæ¼°µ½µÄ֪ʶµãÖڶ࣬ÄѶȽϴ󣬶ÔѧÉúÄÜÁ¦ÒªÇó½Ï¸ß£¬ÓÐÀûÓÚѵÁ·²¢ÌáÉýѧÉú½â¾ö¸´ÔÓÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•áéÖÝ£©Èçͼ£¬ÒÑÖªº¯Êýy=2xºÍº¯Êýy=
kx
µÄͼÏó½»ÓÚA¡¢BÁ½µã£¬¹ýµãA×÷AE¡ÍxÖáÓÚµãE£¬Èô¡÷AOEµÄÃæ»ýΪ4£¬PÊÇ×ø±êƽÃæÉϵĵ㣬ÇÒÒÔµãB¡¢O¡¢E¡¢PΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐΣ¬ÔòÂú×ãÌõ¼þµÄPµã×ø±êÊÇ
P1£¨0£¬-4£©P2£¨-4£¬-4£©P3£¨4£¬4£©
P1£¨0£¬-4£©P2£¨-4£¬-4£©P3£¨4£¬4£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•áéÖÝ£©Èçͼ£¬ÔÚƽÐÐËıßÐÎABCDÖУ¬E¡¢FÊǶԽÇÏßBDÉϵÄÁ½µã£¬ÇÒBE=DF£¬Á¬½ÓAE¡¢CF£®ÇëÄã²ÂÏ룺AEÓëCFÓÐÔõÑùµÄÊýÁ¿¹Øϵ£¿²¢¶ÔÄãµÄ²ÂÏë¼ÓÒÔÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•áéÖÝ£©Èçͼ£¬ÔÚRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬¡ÏABCµÄƽ·ÖÏß½»ACÓÚµãD£¬µãOÊÇABÉÏÒ»µã£¬¡ÑO¹ýB¡¢DÁ½µã£¬ÇÒ·Ö±ð½»AB¡¢BCÓÚµãE¡¢F£®
£¨1£©ÇóÖ¤£ºACÊÇ¡ÑOµÄÇÐÏߣ»
£¨2£©ÒÑÖªAB=10£¬BC=6£¬Çó¡ÑOµÄ°ë¾¶r£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•áéÖÝ£©Èçͼ£¬µãA¡¢B¡¢CÔÚ¡ÑOÉÏ£¬¡ÏACB=30¡ã£¬Ôòsin¡ÏAOBµÄÖµÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•áéÖÝ£©Èçͼ£¬Æ½ÐÐËıßÐÎABCDÖУ¬EÊÇCDµÄÑÓ³¤ÏßÉÏÒ»µã£¬BEÓëAD½»ÓÚµãF£¬CD=2DE£®Èô¡÷DEFµÄÃæ»ýΪa£¬ÔòƽÐÐËıßÐÎABCDµÄÃæ»ýΪ
12a
12a
£¨ÓÃaµÄ´úÊýʽ±íʾ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸