精英家教网 > 初中数学 > 题目详情

【题目】如图,点A,B在反比例函数y= (k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是

【答案】
【解析】解:∵E是AB的中点,
∴SABD=2SADE , SBAC=2SBCE
又∵△BCE的面积是△ADE的面积的2倍,
∴2SABD=SBAC
设点A的坐标为(m, ),点B的坐标为(n, ),则有 ,解得: ,或 (舍去).所以答案是:
【考点精析】利用比例系数k的几何意义对题目进行判断即可得到答案,需要熟知几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,将边长为1的正方形ABCD压扁为边长为1的菱形ABCD.在菱形ABCD中,∠A的大小为α,面积记为S.

(1)请补全下表:

30°

45°

60°

90°

120°

135°

150°

S

1

(2)填空:

由(1)可以发现正方形在压扁的过程中,菱形的面积随着∠A大小的变化而变化,不妨把菱形的面积S记为S(α).例如:当α=30°时,;当α=135°时,.由上表可以得到( ______°);( ______°),…,由此可以归纳出

(3) 两块相同的等腰直角三角板按如图的方式放置,AD=AOB=α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB⊥AC,AD⊥BC,点D是BC的中点,DE⊥AB,DF⊥AC,连接EF,则图中等腰直角三角形的个数是(  )

A. 8个 B. 10个 C. 12个 D. 13个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连接DF,CF.

(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF,CF的数量关系和位置关系(不用证明);

(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;

(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC= ,求此时线段CF的长(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是( )
A.c>a>b
B.b>a>c
C.c>b>a
D.b>c>a

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】铁路货运调度站有A、B两个信号灯,在灯这旁停靠着甲、乙、丙三列火车.它们中最长的车长与居中车长之差等于居中车长与最短车长之差,其中乙车的车长居中,最开始的时候,甲、丙两车车尾对齐,且车尾正好位于A信号灯处,而车头则冲着B信号灯的方向,乙车的车尾则位于B信号灯处,车头则冲着A的方向,现在,三列火车同时出发向前行驶,3秒之后三列火车的车头恰好相遇,再过9秒,甲车恰好超过丙车,而丙车也正好完全和乙车错开,请问:甲乙两车从车头相遇直到完全错开一共用了_____秒钟.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用表示直角三角形的两直角边(),下列四个说法:

.

其中说法正确的是 …………………………………………………………( )

A. ①② B. ①②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小刘从家里骑自行车出发,去镇上超市途中碰到妹妹甜甜走路从镇上回家,小刘在超市买完东西回家,在回去的路上又碰到了甜甜,便载甜甜一起回家,结果小刘比正常速度回家的时间晚了3分钟,二人离镇的距离S(千米)和小刘从家出发后的时间t(分钟)之间的关系如图所示,(假设二人之间交流时间忽略不计)

(1)小刘家离镇上的距离   

(2)小刘和甜甜第1次相遇时离镇上距离是多少?

(3)小刘从家里出发到回家所用的时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了从甲乙两人中选拔一人参加初中数学竞赛每个月对他们进行一次测试如图绘出了两个人赛前 5 次测验成绩(每次测验成绩都是 5 的倍数).

(1)分别求出甲乙两人 5 次测验成绩的平均数与方差

(2)如果你是他们的辅导老师应该选拔哪位学生参加这次竞赛并简要说明理由.

查看答案和解析>>

同步练习册答案