精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,以O为圆心的半圆分别与AB、AC边相切于D、E两点,且O点在BC边上,则图中阴影部分面积S等于( )

A. B. C. 5- D.

【答案】D

【解析】分析:连接OD,OE, OBC交于M、N两点,易得四边形ADOE是正方形,即可得到∠DOM+∠EON=90°,然后设OE=x,由△COE∽△CBA,根据相似三角形的对应边成比例,即可求得x的值,继而由△ABC上边的阴影部分的面积可用△BOD和△BOD内部的扇形的面积差来得出,同理可求出△ABC下边的阴影部分的面积.由此可得出所求的结果.

详解:连接OD,OE,设OBC交于M、N两点,

∵AB、AC分别切⊙OD、E两点,
∴∠ADO=∠AEO=90°,
又∵∠A=90°,
∴四边形ADOE是矩形,
∵OD=OE,
∴四边形ADOE是正方形,

∴∠DOE=90°,
∴∠DOM+∠EON=90°,
OE=x,则AE=AD=OD=x,EC=AC-AE=4-x

∵△COE∽△CBA

解得x=

∴S阴影=S△ABC-S正方形ADOE﹣(S扇形DOM+S扇形EON)=×3×4-(2-=.

故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知抛物线y=a(x-2)2-9经过点P(6,7),与x轴交于A、B两点,与y轴交于点C,直线AP与y轴交于点D,抛物线对称轴与x轴交于点E.

(1)求抛物线的解析式;

(2)过点E任作一条直线l(点B、C分别位于直线l的异侧),设点C到直线的距离为m,点B到直线l的距离为n,求m+n的最大值;

(3)y轴上是否存在点Q,使∠QPD=∠DEO,若存在,请求出点Q的坐标:若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系,位于第二象限的点在反比例函数的图像上,点与点关于原点对称,直线经过点,且与反比例函数的图像交于点.

1)当点的横坐标是-2,点坐标是时,分别求出的函数表达式;

2)若点的横坐标是点的横坐标的4倍,且的面积是16,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】央视热播节目朗读者激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从文史类、社科类、小说类、生活类中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:

(1)此次共调查了   名学生;

(2)将条形统计图补充完整;

(3)图2小说类所在扇形的圆心角为   度;

(4)若该校共有学生2500人,估计该校喜欢社科类书籍的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AB=6,AD=9,BAD的平分线交BC于点E,交DC的延长线于点F,BGAE,垂足为G.若BG=4,则CEF的面积是(

A. B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年五一假期.某数学活动小组组织一次登山活动.他们从山脚下A点出发沿斜坡AB到达B点.再从B点沿斜坡BC到达山顶C点,路线如图所示.斜坡AB的长为1040米,斜坡BC的长为400米,在C点测得B点的俯角为30°.已知A点海拔121米.C点海拔721米.

1)求B点的海拔;

2)求斜坡AB的坡度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程(x﹣3)(x﹣2=|m|

1)求证:对于任意实数m,方程总有两个不相等的实数根;

2)若方程的一个根是1,求m的值及方程的另一个根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,三点在数轴上,点表示的数为,点表示的数为,点为线段的中点.动点在数轴上,且点表示的数为.

1)求点表示的数;

2)点从点出发,向终点运动.中点为.请用含的整式表示线段的长.

3)在(2)的条件下,当为何值时,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头方向,每次移动1个单位长度,依次得到点A1(01)A2(11)A3(10)A4(20)A5(21),…,则点A2018的坐标是_____

查看答案和解析>>

同步练习册答案