分析 (1)根据角平分线的性质得到OP=OR,OR=OQ,证明结论;
(2)根据内心的性质列出方程组,解方程组即可;
(3)证明△ROF≌△QOE,得到答案.
解答 (1)证明:∵OB平分∠ABC,OP⊥BC,OR⊥AB,
∴OP=OR,
同理,OR=OQ,
∴OP=OQ=OR;
(2)解:∵∠A、∠B的角平分线交于点O,
∴O是△ABC的内心,
∴BR=BP=x,AR=AQ=y,CQ=CP=z,
则$\left\{\begin{array}{l}{x+y=7}\\{x+z=8}\\{y+z=9}\end{array}\right.$,
解得,$\left\{\begin{array}{l}{x=3}\\{y=4}\\{z=5}\end{array}\right.$
∴BP=3、CQ=5、AR=4;
(3)由(1)得OR=OQ,
∵O是△ABC的内心,∠A=60゜,
∴∠ROD=∠FOE=120°,
∴∠ROF=∠QOE,
∴△ROF≌△QOE,
∴OE=OF.
点评 本题考查的是角平分线的性质和全等三角形的判定以及内心的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com