∵ BC∥AD,∴ ∠A+________=180°( ____________ ).所以∠B=∠________.
科目:初中数学 来源: 题型:044
阅读下列证明过程:已知,如图四边形ABCD中,AB=DC,AC=BD,AD≠BC,求证:四边形ABCD是等腰梯形.
读后完成下列各小题.
(1)
证明过程是否有错误?如有,错在第几步上,答: .(2)
作DE∥AB的目的是: .(3)
有人认为第9步是多余的,你的看法呢?为什么?答: .(4)
判断四边形ABED为平行四边形的依据是: .(5)
判断四边形ABCD是等腰梯形的依据是 .(6)
若题设中没有AD≠BC,那么四边形ABCD一定是等腰梯形吗?为什么?答: .
查看答案和解析>>
科目:初中数学 来源:初中几何同步单元练习册 第1册 题型:022
如图,已知∠1=,∠2=,
求证:AB∥CD.
证明:因为 ∠1=,∠2=( ),
所以 ∠1=∠2.
因为 ∠2=∠3( ),
所以 ∠1=∠3( ).
所以 AB∥CD( ),
查看答案和解析>>
科目:初中数学 来源:数学教研室 题型:044
D
A B
E
查看答案和解析>>
科目:初中数学 来源: 题型:
探索勾股定理时,我们发现“用不同的方式表示同一图形的面积”可以解决线段和(或差)的有关问题,这种方法称为面积法。请你运用面积法求解下列问题:在等腰三角形ABC中,AB=AC,BD为腰AC上的高。
(1)若BD=h,M时直线BC上的任意一点,M到AB、AC的距离分别为。
① 若M在线段BC上,请你结合图形①证明:= h;
② 当点M在BC的延长线上时,,h之间的关系为 (请直接写出结论,不必证明)
(2)如图②,在平面直角坐标系中有两条直线:y = x + 6 ; :y = -3x+6 若上的一点M到的距离是3,请你利用以上结论求解点M的坐标。
图②
查看答案和解析>>
科目:初中数学 来源: 题型:
两个大小相同且含角的三角板ABC和DEC如图①摆放,使直角顶点重合. 将图①中△DEC绕点C逆时针旋转得到图②,点F、G分别是CD、DE与AB的交点,点H是DE与AC的交点.
(1)不添加辅助线,写出图②中所有与△BCF全等的三角形;
(2)将图②中的△DEC绕点C逆时针旋转得△D1E1C,点F、G、H的对应点分别为F1、G1、H1 ,如图③.探究线段D1F1与AH1之间的数量关系,并写出推理过程;
(3)在(2)的条件下,若D1E1与CE交于点I,求证:G1I =CI.
D | |||
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com