精英家教网 > 初中数学 > 题目详情
已知,如图,在直角坐标系中,矩形OABC的对角线AC所在直线解析式为y=-
3
3
x+1.
(1)在x轴上存在这样的点M,使AMB为等腰三角形,求出所有符合要求的点M的坐标;
(2)动点P从点C开始在线段CO上以每秒
3
个单位长度的速度向点O移动,同时,动点Q从点O开始在线段OA上以每秒1个单位长度的速度向点A移动.设P、Q移动的时间为t秒.
①是否存在这样的时刻2,使△OPQ与△BCP相似,并说明理由;
②设△BPQ的面积为S,求S与t间的函数关系式,并求出t为何值时,S有最小值.
(1)易知A(0,1),C(
3
,0),B(
3
,1).
①AB为腰且MA=AB时,
由题意可知,AM2=AB=
3

∴OM2=
2

∴M2
2
,0),由对称性知M4(-
2
,0),
②AB为腰且MB=AB时,
由题意得OM4=OC-CM4=
3
-
2

∴M1
3
-
2
,0),
由对称性可知M3
3
+
2
,0),
③AB为底边,则M5
1
2
3
,0);

(2)①假设存在这样的时刻t,使△OPQ与△BCP相似.
∵CP=
3
t,OQ=t,OP=
3
-
3
t

OQ
BC
=
OP
CP
OQ
CP
=
OP
BC
得:
t
1
=
3
-
3
t
3
t
t
3
t
=
3
-
3
t
t

即t2+t-1=0或3t=2,
解得t=
-1±
5
2
或t=
2
3

又∵0≤t≤1,
∴当t=
-1+
5
2
或t=
2
3
时,△OPQ与△BCP相似.(7分)
②S=S矩形OABC-S△ABQ-S△OPQ-S△BCP
=
3
-
3
2
(1-t)-
1
2
t(
3
-
3
t
)-
1
2
3
t

=
3
2
(t2-t+1)

=
3
2
(t-
1
2
2+
3
3
8

当t=
1
2
时,面积S有最小值,最小值是
3
3
8
.(10分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,在抛物线y=-
2
3
x2
上取B1
3
2
,-
1
2
),在y轴负半轴上取一个点A1,使△OB1A1为等边三角形;然后在第四象限取抛物线上的点B2,在y轴负半轴上取点A2,使△A1B2A2为等边三角形;重复以上的过程,可得△A99B100A100,则A100的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点O是原点,矩形OABC的顶点A在x轴的正半轴上,顶点C在y的正半轴上,点B的坐标是(5,3),抛物线y=
3
5
x2+bx+c经过A、C两点,与x轴的另一个交点是点D,连接BD.
(1)求抛物线的解析式;
(2)点M是抛物线对称轴上的一点,以M、B、D为顶点的三角形的面积是6,求点M的坐标;
(3)点P从点D出发,以每秒1个单位长度的速度沿D→B匀速运动,同时点Q从点B出发,以每秒1个单位长度的速度沿B→A→D匀速运动,当点P到达点B时,P、Q同时停止运动,设运动的时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是等腰三角形?请直接写出所有符合条件的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c的顶点为A(3,-3),与x轴的一个交点为B(1,0).
(1)求抛物线的解析式.
(2)P是y轴上一个动点,求使P到A、B两点的距离之和最小的点P0的坐标.
(3)设抛物线与x轴的另一个交点为C.在抛物线上是否存在点M,使得△MBC的面积等于以点A、P0、B、C为顶点的四边形面积的三分之一?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=x2+bx+c与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.
(1)求抛物线的函数表达式;
(2)设P为对称轴上一动点,求△APC周长的最小值;
(3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:
(1)当t为何值时,△PBQ是直角三角形?
(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;
(3)设PQ的长为x(cm),试确定y与x之间的关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在△ABC中,∠A=90°,AB=4,AC=3.M是边AB上的动点(M不与A,B重合),MNBC交AC于点N,△AMN关于MN的对称图形是△PMN.设AM=x.
(1)用含x的式子表示△AMN的面积(不必写出过程);
(2)当x为何值时,点P恰好落在边BC上;
(3)在动点M的运动过程中,记△PMN与梯形MBCN重叠部分的面积为y,试求y关于x的函数关系式;并求x为何值时,重叠部分的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

问题情境
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+
a
x
)(x>0)

探索研究
(1)我们可以借鉴学习函数的经验,先探索函数y=x+
1
x
(x>0)
的图象性质.
1填写下表,画出函数的图象:
x
1
4
1
3
1
2
1234
y
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,除了通过观察图象,还可以通过配方得到.同样通过配方也可以求函数y=x+
1
x
(x>0)的最小值.y=x+
1
x
=(
x
)2+(
1
x
)2
=(
x
)2+(
1
x
)2-2
x
1
x
+2
x
1
x

=(
x
-
1
x
)2+2
≥2
x
-
1
x
=0,即x=1时,函数y=x+
1
x
(x>0)的最小值为2.
解决问题
(2)解决“问题情境”中的问题,直接写出答案.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在矩形ABCD中,点E是AD边上一点,连接BE,且∠ABE=30°,BE=DE,连接BD.点P从点E出发沿射线ED运动,过点P作PQBD交直线BE于点Q.
(1)当点P在线段ED上时(如图1),求证:BE=PD+
3
3
PQ;
(2)若BC=6,设PQ长为x,以P、Q、D三点为顶点所构成的三角形面积为y,求y与x的函数关系式(不要求写出自变量x的取值范围);
(3)在②的条件下,当点P运动到线段ED的中点时,连接QC,过点P作PF⊥QC,垂足为F,PF交对角线BD于点G(如图2),求线段PG的长.

查看答案和解析>>

同步练习册答案