精英家教网 > 初中数学 > 题目详情

如图,将边长为4的等边三角形AOB放置于平面直角坐标系xoy中,F是AB边上的动点(不与端点A、B重合),过点F的反比例函数(k>0,x>0)与OA边交于点E,过点F作FC⊥x轴于点C,连结EF、OF.

(1)若SOCF=,求反比例函数的解析式;
(2)在(1)的条件下,试判断以点E为圆心,EA长为半径的圆与y轴的位置关系,并说明理由;
(3)AB边上是否存在点F,使得EF⊥AE?若存在,请求出BF:FA的值;若不存在,请说明理由.

解:(1)设F(x,y),(x>0,y>0),则OC=x,CF=y,
∴SOCF=xy=,即xy=2。∴k=2
∴反比例函数解析式为(x>0)。
(2)该圆与y轴相离,理由如下:
过点E作EH⊥x轴,垂足为H,过点E作EG⊥y轴,垂足为G,

在△AOB中,OA=AB=4,∠AOB=∠ABO=∠A=60°,
设OH=m,则
∴EH=m,OE=2m。∴E坐标为(m,m),
∵E在反比例图象上,∴
∴m1=,m2=-(舍去)。
∴OE=2,EA=4﹣2,EG=
∵4﹣2,∴EA<EG。
∴以E为圆心,EA垂为半径的圆与y轴相离。
(3)存在。
假设存在点F,使AE⊥FE,
过E点作EH⊥OB于点H,设BF=x.

∵△AOB是等边三角形,
∴AB=OA=OB=4,∠AOB=∠ABO=∠A=60°。
∴BC=FB•cos∠FBC=x,FC=FB•sin∠FBC=x,
∴AF=4﹣x,OC=OB﹣BC=4﹣x。
∵AE⊥FE,∴AE=AF•cosA=2﹣x。
∴OE=OA﹣AE=x+2。
∴OH=OE•cos∠AOB=x+1,EH=OE•sin∠AOB=x+
∴E(x+1, x+),F(4﹣x,x)。
∵E、F都在双曲线的图象上,
∴(x+1)(x+)=(4﹣x)•x。解得:x1=4,x2=
当BF=4时,AF=0,BF:AF不存在,舍去。
当BF=时,AF=,BF:AF=1:4

解析试题分析:(1)设F(x,y),得到OC=x与CF=y,表示出三角形OCF的面积,求出xy的值,即为k的值,进而确定出反比例解析式。
(2)过E作EH垂直于x轴,EG垂直于y轴,设OH为m,利用等边三角形的性质及锐角三角函数定义表示出EH与OE,进而表示出E的坐标,代入反比例解析式中求出m的值,确定出EG,OE,EH的长,根据EA与EG的大小关系即可对于圆E与y轴的位置关系作出判断。
(3)过E作EH垂直于x轴,设FB=x,利用等边三角形的性质及锐角三角函数定义表示出FC与BC,进而表示出AF与OC,表示出AE与OE的长,得出OE与EH的长,表示出E与F坐标,根据E与F都在反比例图象上,得到横纵坐标乘积相等列出方程,求出方程的解得到x的值,即可求出BF与FA的比值。 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知反比例函数 (m为常数)的图象经过点A(-1,6).
(1)求m的值;
(2)如图,过点A作直线AC与函数的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m。设AD的长为xm,DC的长为ym。

(1)求y与x之间的函数关系式;
(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线与双曲线交于C、D两点,与x轴交于点A.

(1)求n的取值范围和点A的坐标;
(2)过点C作CB⊥y轴,垂足为B,若S ABC=4,求双曲线的解析式;
(3)在(1)、(2)的条件下,若AB=,求点C和点D的坐标并根据图象直接写出反比例函数的值小于一次函数的值时,自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是32℃.

(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;
(2)根据工艺要求,当材料温度低于480℃时,须停止操作.那么锻造的操作时间有多长?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,正比例函数的图象与反比例函数(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.
(1)求反比例函数的解析式;
(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上找一点P,使PA+PB最小.求P点坐标?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

通过对苏科版八(下)教材一道习题的探索研究,我们知道:一次函数y=x﹣1的图象可以由正比例函数y=x的图象向右平移1个单位长度得到类似的,函数的图象是由反比例函数的图象向左平移2个单位长度得到.灵活运用这一知识解决问题.
如图,已知反比例函数的图象C与正比例函数y=ax(a≠0)的图象l相交于点A(2,2)和点B.
(1)写出点B的坐标,并求a的值;
(2)将函数的图象和直线AB同时向右平移n(n>0)个单位长度,得到的图象分别记为C′和l′,已知图象C′经过点M(2,4).
①求n的值;
②分别写出平移后的两个图象C′和l′对应的函数关系式;
③直接写出不等式的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,AB∥EF,∠C,则的关系是(   )

A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

(2011•重庆)有四张正面分别标有数学﹣3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数学记为

查看答案和解析>>

同步练习册答案