精英家教网 > 初中数学 > 题目详情
已知△分别是的中点,设,,则是(     ).
A.B.C.D.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中点,连接AE、AC.

求证:(1)点F是DC上一点,连接EF,交AC于点O(如图1),△AOE∽△COF;
(2)若点F是DC的中点,连接BD,交AE与点G(如图2),求证:四边形EFDG是菱形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:已知一次函数的图像分别交轴、轴于两点,且点在一次函数的图像上,轴于点

(1)求的值及两点的坐标;
(2)如果点在线段上,且,求点的坐标;
(3)如果点轴上,那么当△与△相似时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

【探究发现】
按图中方式将大小不同的两个正方形放在一起,分别求出阴影部分(⊿ACF)的面积。(单位:厘米,阴影部分的面积依次用S1、S2、S3表示)
1.S1=          cm2;     S2=          cm2;          S3=          cm2.
2.归纳总结你的发现:

【推理反思】
按图中方式将大小不同的两个正方形放在一起,设小正方形的边长是bcm,大正方形的边长是acm,求:阴影部分(⊿ACF)的面积。

【应用拓展】
1.按上图方式将大小不同的两个正方形放在一起,若大正方形的面积是80cm2,则图中阴影三角形的面积是          cm2.
2.如图(1),C是线段AB上任意一点,分别以AC、BC为边在线段AB同侧构造等边三角形⊿ACD和等边三角形⊿CBE,若⊿CBE的边长是1cm,则图中阴影三角形的面积是                        cm2.
3.如图(2),菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是   

(1)                      (2)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知点P为线段AB的黄金分割点(AP>BP),且AB=2,求BP的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知BO是△ABC的外接圆的半径,CD⊥AB于D.若AD=3,BD=8,CD=6,则BO的长为 (   )

A.6               B.          C.          D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,AD是中线,G是重心,过点G作EF∥BC,分别交AB、AC于点,若,则    

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD中,∠ACB=30°,将一块直角三角板的直角顶点P放在两对角线AC,BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别于边AB,BC所在的直线相交,交点分别为E,F.

(1)当PE⊥AB,PF⊥BC时,如图1,则的值为     
(2)现将三角板绕点P逆时针旋转α(0°<α<60°)角,如图2,求的值;
(3)在(2)的基础上继续旋转,当60°<α<90°,且使AP:PC=1:2时,如图3,的值是否变化?证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知边长为4的正方形ABCD,P是BC边上一动点(与B、C不重合),连结AP,作PE⊥AP交∠BCD的外角平分线于E.设BP=x,△PCE面积为y,则y与x的函数关系式是

A.y=2x+1       B.        C.        D.y=2x

查看答案和解析>>

同步练习册答案