【题目】为了安全,交通部门一再提醒司机:请勿超速!同时,进一步完善各类监测系统,如图,在松铜公路某直线路段MN内限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了测速点C,从测速点C测得一小车从点A到达点B行驶了3秒钟,已知∠CAN=45°,∠CBN=60°,BC=120米.
(1)求测速点C到该段公路的距离;
(2)请你通过计算判断此车是否超速,(结果精确到0.1m/s)(参考数据:≈1.41,≈1.73)
【答案】(1)60(米);(2)此车没有超速.
【解析】
(1)作CH⊥MN.在Rt△BCH中,求出CH的长,即可得测速点C到该段公路的距离;(2)利用锐角三角函数分别求出BH、AH的长,即可求得AB的长,再利用速度=路程÷时间求得该车的速度,比较即可解答.
(1)过C作CH⊥MN,垂足为H,
∵∠CBN=60°,BC=120米,
∴CH=BCsin60°=120×=60(米);
(2)BH=BCcos60°=60(米),
∵∠CAN=45°,
∴AH=CH=60米.
∴AB=60﹣60≈43.8(m),
∴车速为43.8÷3=14.6m/s.
∵60千米/小时≈16.7m/s,
又∵14.6 m/s<16.7 m/s.
∴此车没有超速.
科目:初中数学 来源: 题型:
【题目】已知点A是双曲线 (k1>0)上一点,点A的横坐标为1,过点A作平行于y轴的直线,与x轴交于点B,与双曲线(k2<0)交于点C.点D(m,0)是x轴上一点,且位于直线AC右侧,E是AD的中点.
(1)当m=4时,求△ACD的面积(用含k1、k2的代数式表示);
(2)若点E恰好在双曲线(k1>0)上,求m的值;
(3)设线段EB的延长线与y轴的负半轴交于点F,当点D的坐标为D(2,0)时,若△BDF的面积为1,且CF∥AD,求k1的值,并直接写出线段CF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=-x+1与反比例函数y=(x<0)的图象交于点A,与x轴正半轴交于点B,且S△AOB=1,则反比例函数解析式为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某度假村拥有客房40间,该度假村在经营中发现每间客房日租金x(元)与每日租出的客房数(y)有如下关系:
x | 200 | 220 | 260 | 280 |
y | 40 | 35 | 25 | 20 |
(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每日租出的客房数y(间)与每间客房的日租金x(元)之间的关系式.
(2)已知租出的每间客房每日需要清洁费80元,未租出的每间客房每日需要清洁费40元.含x(x≥200)的代数式填表:
租出的客房数 | ______ | 未租出的客房数 | ______ |
租出的每间客房的日收益 | ______ | 所有未租出的客房每日的清洁费 | ______ |
(3)若你是该度假村的老板,你会将每间客房的日租金定为多少元,才能使度假村获得最大日收益?最大日收益是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B、C重合),过点C作CN垂直DM交AB于点N,连结OM、ON、MN.下列五个结论:①△CNB≌△DMC;②;③ON⊥OM;④若AB=2,则的最小值是1;⑤.其中正确结论是_________.(只填番号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知中,,,,点在边上,以为圆心,为半径的弧经过点是弧上一个动点.
求半径的长;
如果点是弧的中点,联结,求的正切值;
如果平分,延长交于点,求线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是平行四边形,以AB为直径的⊙O与CD切于点E,AD交⊙O于点F.
(1)求证:∠ABE=45°;
(2)连接CF,若CE=2DE,求tan∠DFC的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com