【题目】如图,轮船在A处观测灯塔C位于北偏东70o方向上,轮船从A处以每小时30海里的速度沿南偏东50o方向匀速航行,1小时后到达码头B处,此时观测灯塔C位于北偏东25o方向上,求灯塔C与码头B之间的距离(结果保留根号).
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图像与坐标轴交于A、B两点,点C的坐标为,二次函数的图像经过A、B、C三点.
(1)求二次函数的解析式
(2)如图1,已知点在抛物线上,作射线BD,点Q为线段AB上一点,过点Q作轴于点M,作于点N,过Q作轴交抛物线于点P,当QM与QN的积最大时,求点P的坐标;
(3)在(2)的条件下,连接AP,若点E为抛物线上一点,且满足,求点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C,D两点,D点在x轴下方且横坐标小于3,则下列结论中正确的是( )
A.a﹣b+c>0B.2a+b+c<0
C.D.a<﹣1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以AB为直径的半圆O内有一条弦AC,点E是弦AC的中点,连接BE,并延长交半圆O于点D,若OB=2,OE=1,则∠CDE的度数是_______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠ACB=90°,AC=6cm.点P、Q是BC边上两个动点(点Q在点P右边),PQ=2cm,点P从点C出发,沿CB向右运动,运动时间为t秒.5s后点Q到达点B,点P、Q停止运动,过点Q作QD⊥BC交AB于点D,连接AP,设△ACP与△BQD的面积和为S(cm),S与t的函数图像如图2所示.
(1)图1中BC= cm,点P运动的速度为 cm/s;
(2)t为何值时,面积和S最小,并求出最小值;
(3)连接PD,以点P为圆心线段PD的长为半径作⊙P,当⊙P与的边相切时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC 是边长为6cm的等边三角形,被一平行于BC 的矩形所截,边长被截成三等份,则图中阴影部分的面积为 ( )
A.4cm2B.2cm2C.3cm2D.4cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:
时间x(天) | 1≤x<50 | 50≤x≤90 |
售价(元/件) | x+40 | 90 |
每天销量(件) | 200-2x |
已知该商品的进价为每件30元,设销售该商品的每天利润为y元[
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校七年级一班和二班各派出10名学生参加一分钟跳绳比赛,成绩如下表:
跳绳成绩(个) | 132 | 133 | 134 | 135 | 136 | 137 |
一班人数(人) | 1 | 0 | 1 | 5 | 2 | 1 |
二班人数(人) | 0 | 1 | 4 | 1 | 2 | 2 |
(1)两个班级跳绳比赛成绩的众数、中位数、平均数、方差如下表:
众数 | 中位数 | 平均数 | 方差 | |
一班 | a | 135 | 135 | c |
二班 | 134 | b | 135 | 1.8 |
表中数据a= ,b= ,c= ;
(2)请用所学的统计知识,从两个角度比较两个班跳绳比赛的成绩.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC和△ADE中AC=BC,AE=DE , ∠ACB=∠AED=90° , 点E在AB上,F是线段BD的中点,连接CE、FE.
(1)若AD=3,BE=4 ,求EF的长
(2)求证:CE=EF
(3)将图1中的△ADE绕点A顺时针旋转,使△AED的一边AE恰好与△ABC的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com