精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,已知A(-1,-1)、B(2,3),若要在x轴上找一点P,使AP+BP最短,则点P的坐标为(  )
A、(0,0)
B、(-
5
2
,0)
C、(-1,0)
D、(-
1
4
,0)
考点:轴对称-最短路线问题,坐标与图形性质
专题:
分析:根据题意画出坐标系,在坐标系内找出A、B两点,连接AB交x轴于点P,求出P点坐标即可.
解答:解:如图所示,连接AB交x轴于点P,则P点即为所求点.
∵A(-1,-1),
设直线AB的解析式为y=kx+b(k≠0),
-k+b=-1
2k+b=3
,解得
k=
4
3
b=
1
3

∴直线A′B的解析式为y=
4
3
x+
1
3

∴当y=0时,x=-
1
4
,即P(-
1
4
,0).
故选D.
点评:本题考查的是轴对称-最短路线问题,熟知“两点之间,线段最短”是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,如图(1),在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E、G分别在AB、CD上,且AE=CG,连接CE交BG的延长线于F.
(1)求证:BG=CE,BF⊥CE.
(2)过图(1)中的点A作AH⊥CE,交CE的延长线于点H,交CD的延长线于点M,(如图2),找出图中与BE相等的线段,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,有下列六个论断:①AC=CB,②∠A=∠B,③∠ACE=∠BCD,④CE=CD⑤∠E=∠D,⑥BE=AD.请以其中三个论断作为条件,编拟一个由三个条件能推出一个结论成立的真命题,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABD、△AEC都是等边三角形,AF⊥CD于F,AH⊥BE于H.
(1)求证:AF=AH.
(2)当BC不变,AB、AC变化时,EB与CD相交所成的角∠BGD的度数是否发生变化?若不变,求出∠BGD的度数.(只写结论,不写过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是⊙O的直径,C是圆上一点,过C点的切线与过A、B两点的切线分别交于E、F两点,AP、BE相交于点P,求证:CP∥AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

若关于x的一元二次方程ax2+bx+c=0有两个实根x1、x2,分别满足条件:0<x1<1,1<x2<2,抛物线y=ax2+bx+c经过点(0,-2),有下列四个结论:①a+b>2;②2a+b<2;③a<-1;④3a+b>0,其中正确结论的个数为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

画出△ABC关于点A成中心对称的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点AB⊥BD于点B,ED⊥BD于点D,点C在BD上,且∠ACE=90°,AC=CE,AB=4,BC=6.
(1)线段AC=
 

(2)证明△ABC≌△?CDE;
(3)如果点P是线段BC上任意一点,问是否存在P使得点A、E、P构成一个直角三角形?若存在请求出BP的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

2013年我市财政收入继续领跑嘉兴县(市)区,达到94.3亿元,这个数可用科学记数法表示为
 
元.

查看答案和解析>>

同步练习册答案