【题目】如图,AD∥BC,BD为∠ABC的角平分线,DE、DF分别是∠ADB和∠ADC的角平分线,且∠BDF=α,则以下∠A与∠C的关系正确的是( )
A.∠A=2∠C+αB.∠A=2∠C+2αC.∠A=∠C+αD.∠A=∠C+2α
【答案】D
【解析】
由角平分线定义得出∠ABC=2∠CBD,∠ADC=2∠ADF,又因AD∥BC得出∠A+∠ABC=180°,∠ADC+∠C=180°,∠CBD=∠ADB,等量代换得∠A=∠C+2α,即可得到答案.
解:如图所示:
∵BD为∠ABC的角平分线,
∴∠ABC=2∠CBD,
又∵AD∥BC,
∴∠A+∠ABC=180°,
∴∠A+2∠CBD=180°,
又∵DF是∠ADC的角平分线,
∴∠ADC=2∠ADF,
又∵∠ADF=∠ADB+α
∴∠ADC=2∠ADB+2α,
又∵∠ADC+∠C=180°,
∴2∠ADB+2α+∠C=180°,
∴∠A+2∠CBD=2∠ADB+2α+∠C
又∵∠CBD=∠ADB,
∴∠A=∠C+2α,
故选:D.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中, ,点D在BC所在的直线上,点E在射线AC上,且,连接DE.
(1)如图①,若, ,求的度数;
(2)如图②,若, ,求的度数;
(3)当点D在直线BC上(不与点B、C重合)运动时,试探究与的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为( )
A.5
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图.
(1)请补全条形统计图;
(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为 °;
(3)若该地区共有20000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】王伟准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.
(1)请用a表示第三条边长;
(2)问第一条边长可以为7米吗?请说明理由,并求出a的取值范围;
(3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,对于点P(x,y),我们把点(-y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….若点A1的坐标为(2,4),点A2017的坐标为 ( )
A. (-3,3) B. (-2,-2) C. (3,-1) D. (2,4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.
(1)求购买甲、乙两种树苗各多少棵?
(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com