精英家教网 > 初中数学 > 题目详情

【题目】对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②

(1)根据以上操作和发现,求的值;

(2)将该矩形纸片展开.

①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;

②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)

【答案】(1);(2)①证明见解析;②见解析.

【解析】(1)依据△BCE是等腰直角三角形,即可得到CE=BC,由图②,可得CE=CD,而AD=BC,即可得到CD=AD,即=

(2)①由翻折可得,PH=PC,即PH2=PC2,依据勾股定理可得AH2+AP2=BP2+BC2,进而得出AP=BC,再根据PH=CP,∠A=∠B=90°,即可得到Rt△APH≌Rt△BCP(HL),进而得到∠CPH=90°;

②由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,故沿着过D的直线翻折,使点A落在CD边上,此时折痕与AB的交点即为P;由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,进而得到CP平分∠BCE,故沿着过点C的直线折叠,使点B落在CE上,此时,折痕与AB的交点即为P.

(1)由图①,可得∠BCE=∠BCD=45°,

又∵∠B=90°,

∴△BCE是等腰直角三角形,

,即CE=BC,

由图②,可得CE=CD,而AD=BC,

∴CD=AD,

=

(2)①设AD=BC=a,则AB=CD=a,BE=a,

∴AE=(﹣1)a,

如图③,连接EH,则∠CEH=∠CDH=90°,

∵∠BEC=45°,∠A=90°,

∴∠AEH=45°=∠AHE,

∴AH=AE=(﹣1)a,

设AP=x,则BP=a﹣x,由翻折可得,PH=PC,即PH2=PC2

∴AH2+AP2=BP2+BC2

即[(﹣1)a]2+x2=(a﹣x)2+a2

解得x=a,即AP=BC,

又∵PH=CP,∠A=∠B=90°,

∴Rt△APH≌Rt△BCP(HL),

∴∠APH=∠BCP,

又∵Rt△BCP中,∠BCP+∠BPC=90°,

∴∠APH+∠BPC=90°,

∴∠CPH=90°;

②折法:如图,由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,

故沿着过D的直线翻折,使点A落在CD边上,此时折痕与AB的交点即为P;

折法:如图,由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,

由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,

又∵∠DCH=∠ECH,

∴∠BCP=∠PCE,即CP平分∠BCE,

故沿着过点C的直线折叠,使点B落在CE上,此时,折痕与AB的交点即为P.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点AB的坐标分别为(a0),(b0),且满足现同时将点AB分别向上平移2个单位,再向右平移1个单位,分别得到点AB的对应点CD,连接ACBD

1)求点CD的坐标及四边形ABDC的面积;

2)在y轴上是否存在一点M,连接MAMB,使SMAB=S四边形ABDC?若存在这样一点,求出点M的坐标;若不存在,试说明理由;

3)点P是射线BD上的一个动点(不与BD重合),连接PCPA,求∠CPA与∠DCP、∠BAP之间的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各图中的MA1与NAn平行.

(1)图①中的A1+A2= 度,图②中的A1+A2+A3= 度,

图③中的A1+A2+A3+A4= 度,图④中的A1+A2+A3+A4+A5= 度,…,

第⑩个图中的A1+A2+A3++A10=

(2)第n个图中的A1+A2+A3++An=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=-x2x+x轴交于A、B两点(点A在点B的左侧),与y轴于点C,已知点D(0,-).

(1)求直线AC的解析式;

(2)如图1,P为直线AC上方抛物线上的一动点,当PBD的面积最大时,过PPQx轴于点Q,M为抛物线对称轴上的一动点,过My轴的垂线,垂足为点N,连接PM、NQ,求PM+MN+NQ的最小值;

(3)在(2)问的条件下,将得到的PBQ沿PB翻折得到PBQ′,将PBQ′沿直线BD平移,记平移中的PBQ′P′B′Q″,在平移过程中,设直线P′B′x轴交于点E,则是否存在这样的点E,使得B′EQ″为等腰三角形?若存在,求此时OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DEBC于点E.

(1)试判断DE与⊙O的位置关系,并说明理由;

(2)过点DDFAB于点F,若BE=3,DF=3,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为2,.BBE//AC.

(1)BEAC之间的距离;

(2)FBE上一点,连接AF,过CCG//AFBEG.若∠FAB=15°,

①依题意补全图形;

②求证:四边形AFGC是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】)如图中,上任意一点,以点为中心,取旋转角等于,把逆时针旋转,画出旋转后的图形.

)如图,等边中,边上一点,的延长线上,且

求证:

)已知:如图,在中,边上一点,延长线上一点,且,已知.写出求线段长的具体思路(即添加辅助线的方法,推导的具体步骤详写,其它的写出关键步骤或结果即可),并给出最后结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点BECF在一条直线上,ACDEA=DAB=DF

1)试说明:ABC≌△DFE

2)若BF=13EC=7,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在一条笔直的公路进行跑步训练,可以用如图所示一条直线上来刻画他在公路上跑步情境.假定向右跑步的路程记为正数,向左跑步的路程记为负数,则所跑步的各段路程依次记为:+5-3-6+8-6+12-10(单位:百米)

1)小明最后是否回到出发点?

2)小明在跑步过程中距离出发点最远是多少米?

3)在跑步过程中,如果小明每跑1千米会消耗约60卡热量,那么小明此次训练一共会消耗多少卡?

查看答案和解析>>

同步练习册答案